Colloquium: The physics of Maxwell's demon and information
Reviews of Modern Physics 81:1 (2009) 1-23
Abstract:
Maxwell's demon was born in 1867 and still thrives in modern physics. He plays important roles in clarifying the connections between two theories: thermodynamics and information. Here the history of the demon and a variety of interesting consequences of the second law of thermodynamics are presented, mainly in quantum mechanics, but also in the theory of gravity. Also highlighted are some of the recent work that explores the role of information, illuminated by Maxwell's demon, in the arena of quantum-information theory. © 2009 The American Physical Society.A simple thermodynamical witness showing universality of macroscopic entanglement
Open Systems and Information Dynamics 16:2-3 (2009) 287-291
Abstract:
We show that if the ground state entanglement exceeds the total entropy of a given system, then this system is in an entangled state. This is a universal entanglement witness that applies to any physical system and yields a temperature below which we are certain to find some entanglement. Our witness is then applied to generic bosonic and fermionic many-body systems to derive the corresponding "critical" temperatures that have a very broad validity. © 2009 World Scientific Publishing Company.Effect of entanglement on geometric phase for multi-qubit states
Open Systems and Information Dynamics 16:2-3 (2009) 305-323
Abstract:
When a multi-qubit state evolves under local unitaries it may obtain a geometric phase, a feature dependent on the geometry of the state projective Hilbert space. A correction term to this geometric phase, in addition to the local subsystem phases, may appear from correlations between the subsystems. We find that this correction term can be characterized completely either by the entanglement or by the classical correlations for several classes of entangled state. States belonging to the former set are W states and their mixtures, while members of the latter set are cluster states, GHZ states and two classes of bound entangled state. We probe the structures of these states more finely using local invariants and suggest that the cause of the entanglement correction is a recently introduced gauge field-like SL(2,)-invariant called twist. © 2009 World Scientific Publishing Company.Entanglement production in non-equilibrium thermodynamics
Journal of Physics: Conference Series 143 (2009)
Abstract:
We define and analyse the concept of entanglement production during the evolution of a general quantum mechanical dissipative system. While it is important to minimise entropy production in order to achieve thermodynamical efficiency, maximising the rate of change of entanglement is important in quantum information processing. Quantitative relations are obtained between entropy and entanglement productions, under specific assumptions detailed in the text. We apply these to the processes of dephasing and decay of correlations between two initially entangled qubits. Both the Master equation treatment as well as the higher Hilbert space analysis are presented. Our formalism is very general and contains as special cases many reported individual instance of entanglement dynamics, such as, for example, the recently discovered notion of the sudden death of entanglement. © 2009 IOP Publishing Ltd.Quantum criticality of ground and thermal states in XX model
Open Systems and Information Dynamics 16:2-3 (2009) 281-286