Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Classical Vs Quantum correlations in composite systems

(2012)

Authors:

Luigi Amico, Sougato Bose, Vladimir E Korepin, Vlatko Vedral
More details from the publisher

The classical-quantum boundary for correlations: Discord and related measures

Reviews of Modern Physics 84:4 (2012)

Authors:

K Modi, A Brodutch, H Cable, T Paterek, V Vedral

Abstract:

One of the best signatures of nonclassicality in a quantum system is the existence of correlations that have no classical counterpart. Different methods for quantifying the quantum and classical parts of correlations are among the more actively studied topics of quantum-information theory over the past decade. Entanglement is the most prominent of these correlations, but in many cases unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations other than entanglement provides a better division between the quantum and classical worlds, especially when considering mixed states. Here different notions of classical and quantum correlations quantified by quantum discord and other related measures are reviewed. In the first half, the mathematical properties of the measures of quantum correlations are reviewed, related to each other, and the classical-quantum division that is common among them is discussed. In the second half, it is shown that the measures identify and quantify the deviation from classicality in various quantum-information- processing tasks, quantum thermodynamics, open-system dynamics, and many-body physics. It is shown that in many cases quantum correlations indicate an advantage of quantum methods over classical ones. © 2012 American Physical Society.
More details from the publisher
More details

Emergent Thermodynamics in a Quenched Quantum Many-Body System

Physical Review Letters 109:16 (2012)

Authors:

R Dorner, J Goold, C Cormick, M Paternostro, V Vedral

Abstract:

We study the statistics of the work done, fluctuation relations, and irreversible entropy production in a quantum many-body system subject to the sudden quench of a control parameter. By treating the quench as a thermodynamic transformation we show that the emergence of irreversibility in the nonequilibrium dynamics of closed many-body quantum systems can be accurately characterized. We demonstrate our ideas by considering a transverse quantum Ising model that is taken out of equilibrium by an instantaneous change of the transverse field. © 2012 American Physical Society.
More details from the publisher
More details
More details

Classical to quantum in large-number limit

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370:1976 (2012) 4810-4820

Authors:

K Modi, R Fazio, S Pascazio, V Vedral, K Yuasa

Abstract:

We construct a quantumness witness following the work of Alicki & van Ryn (AvR). We reformulate the AvR test by defining it for quantum states rather than for observables. This allows us to identify the necessary quantities and resources to detect quantumness for any given system. The first quantity turns out to be the purity of the system. When applying the witness to a system with even moderate mixedness, the protocol is unable to reveal any quantumness. We then show that having many copies of the system leads the witness to reveal quantumness. This seems contrary to the Bohr correspondence, which asserts that, in the large-number limit, quantum systems become classical, whereas the witness shows quantumness when several non-quantum systems, as determined by the witness, are considered together. However, the resources required to detect the quantumness increase dramatically with the number of systems. We apply the quantumness witness for systems that are highly mixed but in the large-number limit that resembles nuclear magnetic resonance (NMR) systems. We make several conclusions about detecting quantumness in NMR-like systems. © 2012 The Royal Society.
More details from the publisher
More details
More details

The surprise theory of everything

New Scientist 216:2886 (2012) 32-37
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 69
  • Page 70
  • Page 71
  • Page 72
  • Current page 73
  • Page 74
  • Page 75
  • Page 76
  • Page 77
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet