Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

Spin quantum correlations of relativistic particles

Physical Review A - Atomic, Molecular, and Optical Physics 85:6 (2012)

Authors:

PL Saldanha, V Vedral

Abstract:

We show that a pair of massive relativistic spin-1/2 particles prepared in a maximally entangled spin state in general is not capable of maximally violating the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequalities without a postselection of the particles' momenta, representing a major difference in relation to nonrelativistic systems. This occurs because the quantization axis of the measurements performed on each particle depends on the particle velocity, such that it is not possible to define a reduced density matrix for the particles' spin. We also show that the amount of violation of the CHSH inequality depends on the reference frame and that in some frames the inequality may not be violated. © 2012 American Physical Society.
More details from the publisher
More details

Quantum phases with differing computational power.

Nat Commun 3 (2012) 812

Authors:

Jian Cui, Mile Gu, Leong Chuan Kwek, Marcelo França Santos, Heng Fan, Vlatko Vedral

Abstract:

The observation that concepts from quantum information has generated many alternative indicators of quantum phase transitions hints that quantum phase transitions possess operational significance with respect to the processing of quantum information. Yet, studies on whether such transitions lead to quantum phases that differ in their capacity to process information remain limited. Here we show that there exist quantum phase transitions that cause a distinct qualitative change in our ability to simulate certain quantum systems under perturbation of an external field by local operations and classical communication. In particular, we show that in certain quantum phases of the XY model, adiabatic perturbations of the external magnetic field can be simulated by local spin operations, whereas the resulting effect within other phases results in coherent non-local interactions. We discuss the potential implications to adiabatic quantum computation, where a computational advantage exists only when adiabatic perturbation results in coherent multi-body interactions.
More details from the publisher
More details

Reality bites

Physics World IOP Publishing 25:05 (2012) 42-43
More details from the publisher

An Information--Theoretic Equality Implying the Jarzynski Relation

(2012)
More details from the publisher

Using Temporal Entanglement to Perform Thermodynamical Work

(2012)
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • Current page 77
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet