Absolute efficiency estimation of photon-number-resolving detectors using twin beams.
Opt Express 17:6 (2009) 4397-4411
Abstract:
A nonclassical light source is used to demonstrate experimentally the absolute efficiency calibration of a photon-number-resolving detector. The photon-pair detector calibration method developed by Klyshko for single-photon detectors is generalized to take advantage of the higher dynamic range and additional information provided by photon-number-resolving detectors. This enables the use of brighter twin-beam sources including amplified pulse pumped sources, which increases the relevant signal and provides measurement redundancy, making the calibration more robust.Bridging particle and wave sensitivity in a configurable detector of positive operator-valued measures.
Phys Rev Lett 102:8 (2009) 080404
Abstract:
We report an optical detector with tunable positive operator-valued measures. The device is based on a combination of weak-field homodyne techniques and photon-number-resolving detection. The resulting positive operator-valued measures can be continuously tuned from Fock-state projectors to a variety of phase-dependent quantum-state measurements by adjusting different system parameters such as local oscillator coupling, amplitude, and phase, allowing thus not only detection but also preparation of exotic quantum states. Experimental tomographic reconstructions of classical benchmark states are presented as a demonstration of the detector capabilities.Optimal quantum phase estimation.
Phys Rev Lett 102:4 (2009) 040403
Abstract:
By using a systematic optimization approach, we determine quantum states of light with definite photon number leading to the best possible precision in optical two-mode interferometry. Our treatment takes into account the experimentally relevant situation of photon losses. Our results thus reveal the benchmark for precision in optical interferometry. Although this boundary is generally worse than the Heisenberg limit, we show that the obtained precision beats the standard quantum limit, thus leading to a significant improvement compared to classical interferometers. We furthermore discuss alternative states and strategies to the optimized states which are easier to generate at the cost of only slightly lower precision.A proposed testbed for detector tomography
Journal of Modern Optics 56:2-3 (2009) 432-441
Abstract:
Measurement is the only part of a general quantum system that has yet to be characterised experimentally in a complete manner. Detector tomography provides a procedure for doing just this; an arbitrary measurement device can be fully characterised, and thus calibrated, in a systematic way without access to its components or its design. The result is a reconstructed POVM containing the measurement operators associated with each measurement outcome. We consider two detectors, a single-photon detector and a photon-number counter, and propose an easily realised experimental apparatus to perform detector tomography on them. We also present a method of visualising the resulting measurement operators.Focusing on factorability: Space-time coupling in the generation of pure heralded single photons
Journal of Modern Optics 56:2-3 (2009) 179-189