Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Ian Walmsley CBE FRS FCGI

Director, Oxford Quantum Institute

Sub department

  • Atomic and Laser Physics
Ian.Walmsley@physics.ox.ac.uk
Telephone: 01865 772209
  • About
  • Publications

Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors.

Appl Opt 48:19 (2009) 3846-3853

Authors:

Dane R Austin, Tobias Witting, Ian A Walmsley

Abstract:

We describe the elimination of the astigmatism of a Czerny-Turner imaging spectrometer, built using spherical optics and a plane grating, over a broad spectral region. Starting with the principle of divergent illumination of the grating, which removes astigmatism at one chosen wavelength, we obtain design equations for the distance from the grating to the focusing mirror and the detector angle that remove the astigmatism to first order in wavelength. Experimentally, we demonstrate near diffraction-limited performance from 740 to 860 nm and over a 5 mm transverse spatial extent, while ray-tracing calculations show that barring finite-aperture and detector size limitations, this range extends from 640 to 900 nm and over 10 mm transversely. Our technique requires no additional optics and uses standard off-the-shelf components.
More details from the publisher
More details

Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization.

Opt Lett 34:7 (2009) 881-883

Authors:

Tobias Witting, Dane R Austin, Ian A Walmsley

Abstract:

We report a version of spectral phase interferometry for direct electric field reconstruction (SPIDER), in which spectral filters are used to produce the quasi-monochromatic fields required for upconversion. The advantages of this approach include improved calibration accuracy, robustness for strongly chirped input pulses, simplicity, and compactness. We verify the technique experimentally by measuring the spectral chirp of a grating compressor using a spatially encoded arrangement (SEA-)SPIDER.
More details from the publisher
More details

Tailored photon-pair generation in optical fibers.

Phys Rev Lett 102:12 (2009) 123603

Authors:

Offir Cohen, Jeff S Lundeen, Brian J Smith, Graciana Puentes, Peter J Mosley, Ian A Walmsley

Abstract:

We experimentally control the spectral structure of photon pairs created via spontaneous four-wave mixing in microstructured fibers. By fabricating fibers with designed dispersion, one can manipulate the photons' wavelengths, joint spectrum, and, thus, entanglement. As an example, we produce photon pairs with no spectral correlations, allowing direct heralding of single photons in pure-state wave packets without filtering. We achieve an experimental purity of (85.9+/-1.6)%, while theoretical analysis and preliminary tests suggest that 94.5% purity is possible with a much longer fiber.
More details from the publisher
More details

Absolute efficiency estimation of photon-number-resolving detectors using twin beams.

Opt Express 17:6 (2009) 4397-4411

Authors:

AP Worsley, HB Coldenstrodt-Ronge, JS Lundeen, PJ Mosley, BJ Smith, G Puentes, N Thomas-Peter, IA Walmsley

Abstract:

A nonclassical light source is used to demonstrate experimentally the absolute efficiency calibration of a photon-number-resolving detector. The photon-pair detector calibration method developed by Klyshko for single-photon detectors is generalized to take advantage of the higher dynamic range and additional information provided by photon-number-resolving detectors. This enables the use of brighter twin-beam sources including amplified pulse pumped sources, which increases the relevant signal and provides measurement redundancy, making the calibration more robust.
More details from the publisher
More details
Details from ArXiV

Bridging particle and wave sensitivity in a configurable detector of positive operator-valued measures.

Phys Rev Lett 102:8 (2009) 080404

Authors:

Graciana Puentes, Jeff S Lundeen, Matthijs PA Branderhorst, Hendrik B Coldenstrodt-Ronge, Brian J Smith, Ian A Walmsley

Abstract:

We report an optical detector with tunable positive operator-valued measures. The device is based on a combination of weak-field homodyne techniques and photon-number-resolving detection. The resulting positive operator-valued measures can be continuously tuned from Fock-state projectors to a variety of phase-dependent quantum-state measurements by adjusting different system parameters such as local oscillator coupling, amplitude, and phase, allowing thus not only detection but also preparation of exotic quantum states. Experimental tomographic reconstructions of classical benchmark states are presented as a demonstration of the detector capabilities.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • Current page 33
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet