Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors.
Appl Opt 48:19 (2009) 3846-3853
Abstract:
We describe the elimination of the astigmatism of a Czerny-Turner imaging spectrometer, built using spherical optics and a plane grating, over a broad spectral region. Starting with the principle of divergent illumination of the grating, which removes astigmatism at one chosen wavelength, we obtain design equations for the distance from the grating to the focusing mirror and the detector angle that remove the astigmatism to first order in wavelength. Experimentally, we demonstrate near diffraction-limited performance from 740 to 860 nm and over a 5 mm transverse spatial extent, while ray-tracing calculations show that barring finite-aperture and detector size limitations, this range extends from 640 to 900 nm and over 10 mm transversely. Our technique requires no additional optics and uses standard off-the-shelf components.Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization.
Opt Lett 34:7 (2009) 881-883
Abstract:
We report a version of spectral phase interferometry for direct electric field reconstruction (SPIDER), in which spectral filters are used to produce the quasi-monochromatic fields required for upconversion. The advantages of this approach include improved calibration accuracy, robustness for strongly chirped input pulses, simplicity, and compactness. We verify the technique experimentally by measuring the spectral chirp of a grating compressor using a spatially encoded arrangement (SEA-)SPIDER.Tailored photon-pair generation in optical fibers.
Phys Rev Lett 102:12 (2009) 123603
Abstract:
We experimentally control the spectral structure of photon pairs created via spontaneous four-wave mixing in microstructured fibers. By fabricating fibers with designed dispersion, one can manipulate the photons' wavelengths, joint spectrum, and, thus, entanglement. As an example, we produce photon pairs with no spectral correlations, allowing direct heralding of single photons in pure-state wave packets without filtering. We achieve an experimental purity of (85.9+/-1.6)%, while theoretical analysis and preliminary tests suggest that 94.5% purity is possible with a much longer fiber.Absolute efficiency estimation of photon-number-resolving detectors using twin beams.
Opt Express 17:6 (2009) 4397-4411
Abstract:
A nonclassical light source is used to demonstrate experimentally the absolute efficiency calibration of a photon-number-resolving detector. The photon-pair detector calibration method developed by Klyshko for single-photon detectors is generalized to take advantage of the higher dynamic range and additional information provided by photon-number-resolving detectors. This enables the use of brighter twin-beam sources including amplified pulse pumped sources, which increases the relevant signal and provides measurement redundancy, making the calibration more robust.Bridging particle and wave sensitivity in a configurable detector of positive operator-valued measures.
Phys Rev Lett 102:8 (2009) 080404