Direct measurement of time-dependent density-density correlations in a solid through the acoustic analog of the dynamical Casimir effect
(2013)
Femtosecond visualization of lattice dynamics in shock-compressed matter
Science 342:6155 (2013) 220-223
Abstract:
The ultrafast evolution of microstructure is key to understanding high-pressure and strain-rate phenomena. However, the visualization of lattice dynamics at scales commensurate with those of atomistic simulations has been challenging. Here, we report femtosecond x-ray diffraction measurements unveiling the response of copper to laser shock-compression at peak normal elastic stresses of ∼73 gigapascals (GPa) and strain rates of 109 per second. We capture the evolution of the lattice from a one-dimensional (1D) elastic to a 3D plastically relaxed state within a few tens of picoseconds, after reaching shear stresses of 18 GPa. Our in situ high-precision measurement of material strength at spatial (<1 micrometer) and temporal (<50 picoseconds) scales provides a direct comparison with multimillion-atom molecular dynamics simulations.Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal
PHYSICAL REVIEW B 88:10 (2013) ARTN 104105
Resonant Kα spectroscopy of solid-density aluminum plasmas
Physical Review Letters 109:24 (2012)
Abstract:
The x-ray intensities made available by x-ray free electron lasers (FEL) open up new x-ray matter interaction channels not accessible with previous sources. We report here on the resonant generation of Kα emission, that is to say the production of copious Kα radiation by tuning the x-ray FEL pulse to photon energies below that of the K edge of a solid aluminum sample. The sequential absorption of multiple photons in the same atom during the 80 fs pulse, with photons creating L-shell holes and then one resonantly exciting a K-shell electron into one of these holes, opens up a channel for the Kα production, as well as the absorption of further photons. We demonstrate rich spectra of such channels, and investigate the emission produced by tuning the FEL energy to the K-L transitions of those highly charged ions that have transition energies below the K edge of the cold material. The spectra are sensitive to x-ray intensity dependent opacity effects, with ions containing L-shell holes readily reabsorbing the Kα radiation. © 2012 American Physical Society.Revealing multiphoton resonant ionization in solid density plasmas with an x-ray free electron laser
2012 Conference on Lasers and Electro-Optics, CLEO 2012 (2012)