Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal
PHYSICAL REVIEW B 88:10 (2013) ARTN 104105
Resonant Kα spectroscopy of solid-density aluminum plasmas
Physical Review Letters 109:24 (2012)
Abstract:
The x-ray intensities made available by x-ray free electron lasers (FEL) open up new x-ray matter interaction channels not accessible with previous sources. We report here on the resonant generation of Kα emission, that is to say the production of copious Kα radiation by tuning the x-ray FEL pulse to photon energies below that of the K edge of a solid aluminum sample. The sequential absorption of multiple photons in the same atom during the 80 fs pulse, with photons creating L-shell holes and then one resonantly exciting a K-shell electron into one of these holes, opens up a channel for the Kα production, as well as the absorption of further photons. We demonstrate rich spectra of such channels, and investigate the emission produced by tuning the FEL energy to the K-L transitions of those highly charged ions that have transition energies below the K edge of the cold material. The spectra are sensitive to x-ray intensity dependent opacity effects, with ions containing L-shell holes readily reabsorbing the Kα radiation. © 2012 American Physical Society.Revealing multiphoton resonant ionization in solid density plasmas with an x-ray free electron laser
2012 Conference on Lasers and Electro-Optics, CLEO 2012 (2012)
Abstract:
Interaction of intense x-ray and solid density Al plasma is studied via K-shell emission spectroscopy. A high fluence, high-intensity x-ray pulse from an x-ray free-electron laser unveils multiphoton ionization pathway and drives hidden resonances. © 2012 OSA.Direct measurements of the ionization potential depression in a dense plasma
Physical Review Letters 109:6 (2012)
Abstract:
We have used the Linac Coherent Light Source to generate solid-density aluminum plasmas at temperatures of up to 180 eV. By varying the photon energy of the x rays that both create and probe the plasma, and observing the K-α fluorescence, we can directly measure the position of the K edge of the highly charged ions within the system. The results are found to disagree with the predictions of the extensively used Stewart-Pyatt model, but are consistent with the earlier model of Ecker and Kröll, which predicts significantly greater depression of the ionization potential. © 2012 American Physical Society.Testing quantum mechanics in non-Minkowski space-time with high power lasers and 4 th generation light sources
Scientific Reports 2 (2012)