Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
First HED experiment at XFEL

Professor Justin Wark

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Justin.Wark@physics.ox.ac.uk
Telephone: 01865 (2)72251
Clarendon Laboratory, room 029.9
  • About
  • Publications

Imaging Lattice dynamics in individual nanocrystals

Optics InfoBase Conference Papers (2014)

Authors:

JN Clark, L Beitra, G Xiong, A Higginbotham, DM Fritz, HT Lemke, D Zhu, M Chollet, GJ Williams, M Messerschmidt, B Abbey, RJ Harder, AM Korsunsky, JS Wark, IK Robinson

Abstract:

We report imaging of coherent acoustic phonons on the picosecond time scale within a single nanocrystal using an X-ray free-electron laser. Our results allow unprecedented comparison with predictive models and observation of the vibrational modes. © 2014 OSA.
More details from the publisher

Imaging Lattice dynamics in individual nanocrystals

Optica Publishing Group (2014) 09.wed.e.1

Authors:

JN Clark, L Beitra, G Xiong, A Higginbotham, DM Fritz, HT Lemke, D Zhu, M Chollet, GJ Williams, M Messerschmidt, B Abbey, RJ Harder, AM Korsunsky, JS Wark, IK Robinson
More details from the publisher

Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations

Nature Physics (2013)

Authors:

M Trigo, M Fuchs, J Chen, MP Jiang, AM Lindenberg, DA Reis, K Gaffney, S Ghimire, ME Kozina, G Ndabashimiye, M Cammarata, DM Fritz, H Lemke, D Zhu, S Fahy, A Higginbotham, JS Wark, SL Johnson, J Larsson, F Quirin, K Sokolowski-Tinten, C Uher, G Wang

Abstract:

The macroscopic characteristics of a material are determined by its elementary excitations, which dictate the response of the system to external stimuli. The spectrum of excitations is related to fluctuations in the density-density correlations and is typically measured through frequency-domain neutron or X-ray scattering. Time-domain measurements of these correlations could yield a more direct way to investigate the excitations of solids and their couplings both near to and far from equilibrium. Here we show that we can access large portions of the phonon dispersion of germanium by measuring the diffuse scattering from femtosecond X-ray free-electron laser pulses. A femtosecond optical laser pulse slightly quenches the vibrational frequencies, producing pairs of high-wavevector phonons with opposite momenta. These phonons manifest themselves as time-dependent coherences in the displacement correlations probed by the X-ray scattering. As the coherences are preferentially created in regions of strong electron-phonon coupling, the time-resolved approach is a natural spectroscopic tool for probing low-energy collective excitations in solids, and their microscopic interactions.
More details from the publisher
More details

Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals.

Science 341:6141 (2013) 56-59

Authors:

JN Clark, L Beitra, G Xiong, A Higginbotham, DM Fritz, HT Lemke, D Zhu, M Chollet, GJ Williams, M Messerschmidt, B Abbey, RJ Harder, AM Korsunsky, JS Wark, IK Robinson

Abstract:

Key insights into the behavior of materials can be gained by observing their structure as they undergo lattice distortion. Laser pulses on the femtosecond time scale can be used to induce disorder in a "pump-probe" experiment with the ensuing transients being probed stroboscopically with femtosecond pulses of visible light, x-rays, or electrons. Here we report three-dimensional imaging of the generation and subsequent evolution of coherent acoustic phonons on the picosecond time scale within a single gold nanocrystal by means of an x-ray free-electron laser, providing insights into the physics of this phenomenon. Our results allow comparison and confirmation of predictive models based on continuum elasticity theory and molecular dynamics simulations.
More details from the publisher
More details

The effects of ionization potential depression on the spectra emitted by hot dense aluminium plasmas

High Energy Density Physics 9:2 (2013) 258-263

Authors:

TR Preston, SM Vinko, O Ciricosta, HK Chung, RW Lee, JS Wark

Abstract:

Recent experiments at the Linac Coherent Light Source (LCLS) X-ray Free-Electron-Laser (FEL) have demonstrated that the standard model used for simulating ionization potential depression (IPD) in a plasma (the Stewart-Pyatt (SP) model, J.C. Stewart and K.D. Pyatt Jr., Astrophysical Journal 144 (1966) 1203) considerably underestimates the degree of IPD in a solid density aluminium plasma at temperatures up to 200 eV. In contrast, good agreement with the experimental data was found by use of a modified Ecker-Kröll (mEK) model (G. Ecker and W. Kröll, Physics of Fluids 6 (1963) 62-69). We present here detailed simulations, using the FLYCHK code, of the predicted spectra from hot dense, hydrogenic and helium-like aluminium plasmas ranging in densities from 0.1 to 4 times solid density, and at temperatures up to 1000 eV. Importantly, we find that the greater IPDs predicted by the mEK model result in the loss of the n = 3 states for the hydrogenic ions for all densities above ≈0.8 times solid density, and for the helium-like ions above ≈0.65 solid density. Therefore, we posit that if the mEK model holds at these higher temperatures, the temperature of solid density highly-charged aluminium plasmas cannot be determined by using spectral features associated with the n = 3 principal quantum number, and propose a re-evaluation of previous experimental data where high densities have been inferred from the spectra, and the SP model has been used. © 2013 Elsevier B.V.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet