Quantifying ionization in hot dense plasmas
Physical Review E American Physical Society 109 (2024) L023201
Abstract:
Ionization is a problematic quantity in that it does not have a well-defined thermodynamic definition, yet it is a key parameter within plasma modelling. One still therefore aims to find a consistent and unambiguous definition for the ionization state. Within this context we present finite-temperature density functional theory calculations of the ionization state of carbon in CH plasmas using two potential definitions: one based on counting the number of continuum electrons, and another based on the optical conductivity. Differences of up to 10% are observed between the two methods. However, including “Pauli forbidden” transitions in the conductivity reproduces the counting definition, suggesting such transitions are important to evaluate the ionization state.Achievement of target gain larger than unity in an inertial fusion experiment
Physical Review Letters American Physical Society 132:6 (2024) 065102
Abstract:
On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.Resonant inelastic x-ray scattering in warm-dense Fe compounds beyond the SASE FEL resolution limit
(2024)
Crystal plasticity finite element simulation of lattice rotation and x-ray diffraction during laser shock compression of tantalum
Physical Review Materials American Physical Society 7:11 (2023) 113608
Abstract:
We present a crystal plasticity model tailored for high-pressure, high-strain-rate conditions that uses a multiscale treatment of dislocation-based slip kinetics. We use this model to analyze the pronounced plasticity-induced lattice rotations observed in shock-compressed polycrystalline tantalum via in situ x-ray diffraction. By making direct comparisons between experimentally measured and simulated texture evolution, we can explain how the details of the underlying slip kinetics control the degree of lattice rotation that ensues. Specifically, we show that only the highly nonlinear kinetics caused by dislocation nucleation can explain the magnitude of the rotation observed under shock compression. We demonstrate a good fit between our crystal plasticity model and x-ray diffraction data and exploit the data to quantify the dislocation nucleation rates that are otherwise poorly constrained by experiment in the dynamic compression regime.Dielectronic satellite emission from a solid-density Mg plasma: relationship to models of ionisation potential depression
(2023)