Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
First HED experiment at XFEL

Professor Justin Wark

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Justin.Wark@physics.ox.ac.uk
Telephone: 01865 (2)72251
Clarendon Laboratory, room 029.9
  • About
  • Publications

Femtosecond Diffraction and Dynamic High Pressure Science

(2022)

Authors:

Justin S Wark, Malcolm I McMahon, Jon H Eggert
More details from the publisher
Details from ArXiV

Slip competition and rotation suppression in tantalum and copper during dynamic uniaxial compression

(2022)

Authors:

Patrick G Heighway, Justin S Wark
More details from the publisher
Details from ArXiV

Molecular dynamics simulations of inelastic X-Ray scattering from shocked copper

Journal of Applied Physics AIP Publishing 130 (2021) 125901

Authors:

Oliver Karnbach, Patrick Heighway, David McGonegle, Gianluca Gregori, Justin Wark

Abstract:

By taking the spatial and temporal Fourier transforms of the coordinates of the atoms in molecular dynamics simulations conducted using an embedded-atom-method potential, we calculate the inelastic scattering of x-rays from copper singlecrystals shocked along [001] to pressures of up to 70 GPa. Above the Hugoniot elastic limit (HEL), we find that the copious stacking faults generated at the shock front introduce strong quasi-elastic scattering (QES) that competes with the inelastic scattering signal, which remains discernible within the first Brillouin zone; for specific directions in reciprocal space outside the first zone, the QES dominates the inelastic signal overwhelmingly. The synthetic scattering spectra we generate from our Fourier transforms suggest that energy resolutions of order 10 meV would be required to distinguish inelastic from quasi-elastic scattering within the first Brillouin zone of shock-loaded copper. We further note that high-resolution inelastic scattering also affords the possibility of directly measuring particle velocities via the Doppler shift. These simulations are of relevance to future planned inelastic scattering experiments at x-ray Free Electron Laser (FEL) facilities.
More details from the publisher
Details from ORA
More details

Excited-state potentials for modelling dense plasmas from first principles

Plasma Physics and Controlled Fusion IOP Publishing 63 (2021) 114006

Authors:

Patrick James Hollebon, Justin S Wark, Sam Vinko

Abstract:

The modelling of dense plasmas using finite-temperature density functional theory has proven very successful in determining transport properties and the equation of state of systems where quantum many-body effects and correlations play a key role in their structure. Here we show how excited-state projector augmented-wave potentials can be used to extend these calculations to explicitly model core-hole states, allowing for the calculation of the electronic structure of a range of integer charge configurations embedded in a dense plasma environment. Our excited-state potentials show good agreement with all-electron calculations at finite-temperatures, motivating their use as an efficient approach in modelling from first principles both the structure of strongly-coupled non-equilibrium plasmas and their interaction with intense X-rays.
More details from the publisher
Details from ORA
More details

Crystal plasticity finite element simulation of lattice rotation and x-ray diffraction during laser shock-compression of Tantalum

(2021)

Authors:

P Avraam, D McGonegle, PG Heighway, CE Wehrenberg, E Floyd, A Comley, JM Foster, J Turner, S Case, JS Wark
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet