Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
First HED experiment at XFEL

Professor Justin Wark

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Justin.Wark@physics.ox.ac.uk
Telephone: 01865 (2)72251
Clarendon Laboratory, room 029.9
  • About
  • Publications

Lawson criterion for ignition exceeded in an inertial fusion experiment

Physical Review Letters American Physical Society 129 (2022) 075001

Authors:

Gianluca Gregori, Justin Wark

Abstract:

For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin “burn propagation” into surrounding cold fuel, enabling the possibility of high energy gain. While “scientific breakeven” (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion.
More details from the publisher
Details from ORA
More details
More details
More details

Non-thermal evolution of dense plasmas driven by intense x-ray fields

(2022)

Authors:

Shenyuan Ren, Yuanfeng Shi, Quincy Y van den Berg, Muhammad Firmansyah, Hyun-Kyung Chung, Elisa V Fernandez-Tello, Pedro Velarde, Justin S Wark, Sam M Vinko
More details from the publisher
Details from ArXiV

Atomistic investigation of cavitation and ablation in tantalum foils under irradiation with x-rays approaching 5 keV

Physical Review B American Physical Society 106 (2022) 024107

Abstract:

The rapid irradiation and heating of matter can lead to material removal via a process known as ablation. While previous investigations have focused on ablation with optical and soft x-ray pulses, the process is not well understood for the high-energy x-rays delivered at current x-ray free electron laser facilities. In this paper, we use hybrid two-temperature model molecular dynamics simulations to determine the damage threshold and dynamics for tantalum foils under irradiation with x-rays in the range 1–5 keV. We report that damage occurs for foils with thickness 300 nm when heated to around 1.25 eV/atom. This damage results from the combined processes of melting and cavitation, finally resulting in the removal of material layers. The predictions of this study, in terms of the cavitation threshold and underlying dynamics, could guide interpretation of experiments as well as applications including development of beamline optics for free-electron lasers. We report consistency between cavitation and ablation behavior in isochoric heating experiments and spall processes in hydrodynamic compression and release experiments, confirming the primary modes of damage are mechanical in nature for the x-ray energies investigated.
More details from the publisher
Details from ORA
More details

Author Correction: Metastability of diamond ramp-compressed to 2 terapascals.

Nature 605:7909 (2022) E1

Authors:

A Lazicki, D McGonegle, JR Rygg, DG Braun, DC Swift, MG Gorman, RF Smith, PG Heighway, A Higginbotham, MJ Suggit, DE Fratanduono, F Coppari, CE Wehrenberg, RG Kraus, D Erskine, JV Bernier, JM McNaney, RE Rudd, GW Collins, JH Eggert, JS Wark
More details from the publisher
More details
More details

Slip competition and rotation suppression in tantalum and copper during dynamic uniaxial compression

Physical Review Materials American Physical Society 6 (2022) 043605

Abstract:

When compressed, a metallic specimen will generally experience changes to its crystallographic texture due to plasticity-induced rotation. Ultrafast x-ray diffraction techniques make it possible to measure rotation of this kind in targets dynamically compressed over nanosecond timescales to the kind of pressures ordinarily encountered in planetary interiors. The axis and the extent of the local rotation can provide hints as to the combination of plasticity mechanisms activated by the rapid uniaxial compression, thus providing valuable information about the underlying dislocation kinetics operative during extreme loading conditions. We present large-scale molecular dynamics simulations of shock-induced lattice rotation in three model crystals whose behavior has previously been characterized in dynamic-compression experiments: tantalum shocked along its [101] direction, and copper shocked along either [001] or [111]. We find that, in all three cases, the texture changes predicted by the simulations are consistent with those measured experimentally using in situ x-ray diffraction. We show that while tantalum loaded along [101] and copper loaded along [001] both show pronounced rotation due to asymmetric multiple slip, the orientation of copper shocked along [111] is predicted to be stabilized by opposing rotations arising from competing, symmetrically equivalent slip systems.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet