Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
First HED experiment at XFEL

Professor Justin Wark

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Justin.Wark@physics.ox.ac.uk
Telephone: 01865 (2)72251
Clarendon Laboratory, room 029.9
  • About
  • Publications

Experimental observation of open structures in elemental magnesium at terapascal pressures

Nature Physics Springer Nature 18:11 (2022) 1307-1311

Authors:

MG Gorman, S Elatresh, A Lazicki, MME Cormier, S Bonev, D McGonegle, R Briggs, AL Coleman, SD Rothman, L Peacock, J Bernier, F Coppari, DG Braun, JR Rygg, DE Fratanduono, R Hoffmann, GW Collins, Justin Wark, RF Smith, JH Eggert, MI McMahon

Abstract:

Investigating how solid matter behaves at enormous pressures, such as those found in the deep interiors of giant planets, is a great experimental challenge. Over the past decade, computational predictions have revealed that compression to terapascal pressures may bring about counter-intuitive changes in the structure and bonding of solids as quantum mechanical forces grow in influence1,2,3,4,5,6. Although this behaviour has been observed at modest pressures in the highly compressible light alkali metals7,8, it has not been established whether it is commonplace among high-pressure solids more broadly. We used shaped laser pulses at the National Ignition Facility to compress elemental Mg up to 1.3 TPa, which is approximately four times the pressure at the Earth’s core. By directly probing the crystal structure using nanosecond-duration X-ray diffraction, we found that Mg changes its crystal structure several times with non-close-packed phases emerging at the highest pressures. Our results demonstrate that phase transformations of extremely condensed matter, previously only accessible through theoretical calculations, can now be experimentally explored.
More details from the publisher
Details from ORA
More details

Experimental observation of open structures in elemental magnesium at terapascal pressures

Nature Physics Springer Nature 18:11 (2022) 1307-1311

Authors:

Mg Gorman, S Elatresh, A Lazicki, Mme Cormier, Sa Bonev, D McGonegle, R Briggs, Al Coleman, Sd Rothman, L Peacock, Jv Bernier, F Coppari, Dg Braun, Jr Rygg, De Fratanduono, R Hoffmann, Gw Collins, Js Wark, Rf Smith, Jh Eggert, Mi McMahon

Abstract:

Investigating how solid matter behaves at enormous pressures, such as those found in the deep interiors of giant planets, is a great experimental challenge. Over the past decade, computational predictions have revealed that compression to terapascal pressures may bring about counter-intuitive changes in the structure and bonding of solids as quantum mechanical forces grow in influence1,2,3,4,5,6. Although this behaviour has been observed at modest pressures in the highly compressible light alkali metals7,8, it has not been established whether it is commonplace among high-pressure solids more broadly. We used shaped laser pulses at the National Ignition Facility to compress elemental Mg up to 1.3 TPa, which is approximately four times the pressure at the Earth’s core. By directly probing the crystal structure using nanosecond-duration X-ray diffraction, we found that Mg changes its crystal structure several times with non-close-packed phases emerging at the highest pressures. Our results demonstrate that phase transformations of extremely condensed matter, previously only accessible through theoretical calculations, can now be experimentally explored.

More details from the publisher
More details

Femtosecond diffraction and dynamic high pressure science

Journal of Applied Physics AIP Publishing 132 (2022) 080902

Authors:

Justin Wark, Malcolm I McMahon, Jon H Eggert

Abstract:

Solid-state material at high pressure is prevalent throughout the Universe, and an understanding of the structure of matter under such extreme conditions, gleaned from x-ray diffraction, has been pursued for the best part of a century. The highest pressures that can be reached to date (2 TPa) in combination with x-ray diffraction diagnosis have been achieved by dynamic compression via laser ablation [A. Lazicki et al., Nature 589, 532–535 (2021)]. The past decade has witnessed remarkable advances in x-ray technologies, with novel x-ray Free-Electron-Lasers (FELs) affording the capacity to produce high quality single-shot diffraction data on timescales below 100 fs. We provide a brief history of the field of dynamic compression, spanning from when the x-ray sources were almost always laser-plasma based, to the current state-of-the art diffraction capabilities provided by FELs. We give an overview of the physics of dynamic compression, diagnostic techniques, and the importance of understanding how the rate of compression influences the final temperatures reached. We provide illustrative examples of experiments performed on FEL facilities that are starting to give insight into how materials deform at ultrahigh strain rates, their phase diagrams, and the types of states that can be reached. We emphasize that there often appear to be differences in the crystalline phases observed between the use of static and dynamic compression techniques. We give our perspective on both the current state of this rapidly evolving field and some glimpses of how we see it developing in the near-to-medium term.
More details from the publisher
Details from ORA
More details

Lawson criterion for ignition exceeded in an inertial fusion experiment

Physical Review Letters American Physical Society 129 (2022) 075001

Authors:

Gianluca Gregori, Justin Wark

Abstract:

For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin “burn propagation” into surrounding cold fuel, enabling the possibility of high energy gain. While “scientific breakeven” (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion.
More details from the publisher
Details from ORA
More details
More details
More details

Non-thermal evolution of dense plasmas driven by intense x-ray fields

(2022)

Authors:

Shenyuan Ren, Yuanfeng Shi, Quincy Y van den Berg, Muhammad Firmansyah, Hyun-Kyung Chung, Elisa V Fernandez-Tello, Pedro Velarde, Justin S Wark, Sam M Vinko
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet