DSMC analysis of Astrobotic's Peregrine Mission-1: MON-25 leak and water outgassing
Acta Astronautica 237 (2025) 196-207
Abstract:
Astrobotic's Peregrine Mission-1 spacecraft experienced a propulsion system anomaly that prevented the lander from reaching the Moon. During the mission, several instruments operated successfully in cis-lunar space. Among them, the Peregrine Ion Trap Mass Spectrometer (PITMS) measured both the presence of outgassing water and nitrogen oxides traceable to the MON-25 oxidizer. We performed Direct Simulation Monte Carlo (DSMC) studies of the oxidizer leak on Peregrine to characterize the gas diffusion from the leak to the instrument, mediated by inter-species collisions and gas–surface interaction. We conclude that the latter process was prevalent and that diffusion paths through Peregrine are necessary to explain the PITMS detections. Our DSMC study and estimation of Peregrine's outgassing rate suggest that, at the early stage of the mission, the spacecraft released water at a rate comparable to the Space Shuttle and at a much larger rate than typical spacecraft during science operations. This provides useful information for planning future operations of science instruments on commercial missions.LIRIS: demonstrating how small satellites can revolutionise lunar science data sets
Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 13546 (2025) 135460d-135460d-9
The Peregrine Ion Trap Mass Spectrometer (PITMS): Results from a CLPS-delivered Mass Spectrometer
The Planetary Science Journal American Astronomical Society 6:1 (2025) 14
Bidirectional reflectance distribution function measurements of characterized Apollo regolith samples using the visible oxford space environment goniometer
Meteoritics and Planetary Science Wiley 59:11 (2024) 3111-3123
Characterization of sites of scientific interest for ESA's PROSPECT instrument
Icarus Elsevier 421 (2024) 116240