Spectral Characterization of Bennu Analogs Using PASCALE: A New Experimental Set-Up for Simulating the Near-Surface Conditions of Airless Bodies.
Journal of geophysical research. Planets 126:2 (2021) e2020JE006624
Abstract:
We describe the capabilities, radiometric stability, and calibration of a custom vacuum environment chamber capable of simulating the near-surface conditions of airless bodies. Here we demonstrate the collection of spectral measurements of a suite of fine particulate asteroid analogs made using the Planetary Analogue Surface Chamber for Asteroid and Lunar Environments (PASCALE) under conditions like those found on Earth and on airless bodies. The sample suite includes anhydrous and hydrated physical mixtures, and chondritic meteorites (CM, CI, CV, CR, and L5) previously characterized under Earth- and asteroid-like conditions. And for the first time, we measure the terrestrial and extra-terrestrial mineral end members used in the olivine- and phyllosilicate-dominated physical mixtures under the same conditions as the mixtures and meteorites allowing us better understand how minerals combine spectrally when mixed intimately. Our measurements highlight the sensitivity of thermal infrared emissivity spectra to small amounts of low albedo materials and the composition of the sample materials. As the albedo of the sample decreases, we observe smaller differences between Earth- and asteroid-like spectra, which results from a reduced thermal gradient in the upper hundreds of microns in the sample. These spectral measurements can be compared to thermal infrared emissivity spectra of asteroid (101955) Bennu's surface in regions where similarly fine particulate materials may be observed to infer surface compositions.Author Correction: Shape of (101955) Bennu indicative of a rubble pile with internal stiffness
Nature Geoscience Springer Nature 13:11 (2020) 764-764
Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures.
Science (New York, N.Y.) 369:6509 (2020) 1338-1343
Abstract:
Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities.On‐Deck Seismology: Lessons from InSight for Future Planetary Seismology
Journal of Geophysical Research Planets American Geophysical Union (AGU) 125:4 (2020)
The atmosphere of Mars as observed by InSight
Nature Geoscience Springer Nature 13:3 (2020) 190-198