Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Department of Physics
Credit: Jack Hobhouse

Dr Tristram Warren

Head of Infrared Multilayer Laboratory

Sub department

  • Professional and support services

Research groups

  • Planetary surfaces
  • Solar system
  • Space instrumentation
Tristram.Warren@physics.ox.ac.uk
Telephone: 01865 (2)72089
Atmospheric Physics Clarendon Laboratory, room 304
  • About
  • Publications

The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

Nature Astronomy Springer Nature 3:4 (2019) 352-361

Authors:

DJ Scheeres, JW McMahon, AS French, DN Brack, D Farnocchia, Y Takahashi, JM Leonard, J Geeraert, B Page, P Antreasian, K Getzandanner, D Rowlands, EM Mazarico, J Small, DE Highsmith, M Moreau, JP Emery, B Rozitis, M Hirabayashi, P Sanchez, S Van Wal, P Tricarico, R-L Ballouz, CL Johnson, Al Al Asad, HCM Susorney, OS Barnouin, JA Seabrook, RW Gaskell, EE Palmer, KJ Walsh, ER Jawin, EB Bierhaus, P Michel, WF Bottke, MC Nolan, CHC Jr, DS Lauretta, D Vokrouhlicky, Neil Bowles, E Brown, KLD Hanna, T Warren, C Brunet, RA Chicoine, S Desjardins, D Gaudreau

Abstract:

The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids.
More details from the publisher
Details from ORA
More details
More details

The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations

Nature Communications Springer Nature 10:1 (2019) 1291

Authors:

CW Hergenrother, CK Maleszewski, MC Nolan, J-Y Li, CY Drouet D'Aubigny, FC Shelly, ES Howell, TR Kareta, MRM Izawa, MA Barucci, EB Bierhaus, H Campins, BE Clark, EJ Christensen, DN Dellagiustina, S Fornasier, CM Hartzell, B Rizk, DJ Scheeres, PH Smith, X-D Zou, DS Lauretta

Abstract:

During its approach to asteroid (101955) Bennu, NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu's immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission's safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu's surface to an upper limit of 150 g s-1 averaged over 34 min. Bennu's disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu's rotation rate is accelerating continuously at 3.63 ± 0.52 × 10-6 degrees day-2, likely due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, with evolutionary implications.
More details from the publisher
Details from ORA
More details
More details

The unexpected surface of asteroid (101955) Bennu

Nature Springer Nature 568:7750 (2019) 55-60

Authors:

DS Lauretta, DN Dellagiustina, CA Bennett, KJ Becker, SS Balram-Knutson, OS Barnouin, TL Becker, WF Bottke, WV Boynton, H Campins, BE Clark, HC Connolly, CY Drouet D'Aubigny, JP Dworkin, JP Emery, HL Enos, VE Hamilton, CW Hergenrother, ES Howell, MRM Izawa, HH Kaplan, MC Nolan, B Rizk, HL Roper, DJ Scheeres, PH Smith, KJ Walsh, CWV Wolner, Neil Bowles

Abstract:

NASA'S Origins, Spectral Interpretation, Resource Identification and Security-Regolith Explorer (OSIRIS-REx) spacecraft recently arrived at the near-Earth asteroid (101955) Bennu, a primitive body that represents the objects that may have brought prebiotic molecules and volatiles such as water to Earth1. Bennu is a low-albedo B-type asteroid2 that has been linked to organic-rich hydrated carbonaceous chondrites3. Such meteorites are altered by ejection from their parent body and contaminated by atmospheric entry and terrestrial microbes. Therefore, the primary mission objective is to return a sample of Bennu to Earth that is pristine-that is, not affected by these processes4. The OSIRIS-REx spacecraft carries a sophisticated suite of instruments to characterize Bennu's global properties, support the selection of a sampling site and document that site at a sub-centimetre scale5-11. Here we consider early OSIRIS-REx observations of Bennu to understand how the asteroid's properties compare to pre-encounter expectations and to assess the prospects for sample return. The bulk composition of Bennu appears to be hydrated and volatile-rich, as expected. However, in contrast to pre-encounter modelling of Bennu's thermal inertia12 and radar polarization ratios13-which indicated a generally smooth surface covered by centimetre-scale particles-resolved imaging reveals an unexpected surficial diversity. The albedo, texture, particle size and roughness are beyond the spacecraft design specifications. On the basis of our pre-encounter knowledge, we developed a sampling strategy to target 50-metre-diameter patches of loose regolith with grain sizes smaller than two centimetres4. We observe only a small number of apparently hazard-free regions, of the order of 5 to 20 metres in extent, the sampling of which poses a substantial challenge to mission success.
More details from the publisher
Details from ORA
More details
More details

SEIS: insight's seismic experiment for internal structure of Mars

Space Science Reviews Space Science Reviews 215:12 (2019)

Authors:

P Lognonne, WB Banerdt, D Giardini, WT Pike, U Christensen, P Laudet, S De Raucourt, P Zweifel, Simon Calcutt, M Bierwirth, KJ Hurst, F Ijpelaan, JW Umland, R Llorca-Cejudo, RF Garcia, S Kedar, B Knapmeyer-Endrun, D Mimoun, A Mocquet, MP Panning, RC Weber, A Sylvestre-Baron, G Pont, N Verdier, L Kerjean, LJ Facto, V Gharakanian, JE Feldman, TL Hoffman, DB Klein, K Klein, NP Onufer, J Paredes-Garcia, MP Petkov, M Drilleau, T Gabsi, T Nebut, O Robert, S Tillier, C Moreau, M Parise, G Aveni, S Ben Charef, Y Bennour, T Camus, PA Dandonneau, C Desfoux

Abstract:

By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∼ 2500 at 1 Hz and ∼200000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw∼ 3 at 40 ∘ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution.
More details from the publisher
Details from ORA
More details
More details
More details

Modeling the angular dependence of emissivity of randomly rough surfaces

Journal of Geophysical Research American Geophysical Union 124:2 (2019) 585-601

Authors:

Tristram Warren, Neil Bowles, Kerri Donaldson Hanna, J Bandfield

Abstract:

Directional emissivity (DE) describes how the emissivity of an isothermal surface changes with viewing angle across thermal infrared wavelengths. The Oxford Space Environment Goniometer (OSEG) is a novel instrument that has been specifically designed to measure the DE of regolith materials derived from planetary surfaces. The DE of Nextel high emissivity black paint was previously measured by the OSEG and showed that the measured emissivity decreases with increasing emission angle, from an emissivity of 0.97 ± 0.01 at 0° emission angle to an emissivity of 0.89± 0.01 at 71° emission angle. The Nextel target measured was isothermal (<0.1 K surface temperature variation) and the observed change in emissivity was due to Fresnel related effects and was not due to non-isothermal effects. Here we apply several increasingly complex modelling techniques to model the measured DE of Nextel black paint. The modelling techniques used here include the Hapke DE model, the Fresnel equations, a multiple slope Fresnel model and a Monte Carlo ray-tracing model. It was found that only the Monte Carlo raytracing model could accurately fit the OSEG measured Nextel data. We show that this is because the Monte Carlo ray-tracing model is the only model that fully accounts for the surface roughness of the Nextel surface by including multiple scattering effects.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet