Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Banner background image

Dr Antje Weisheimer (she)

Principal NCAS Research Fellow

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
Antje.Weisheimer@physics.ox.ac.uk
Telephone: 01865 (2)82441
Robert Hooke Building, room S37
ECMWF
NCAS
  • About
  • Current projects
  • Research
  • Selected Publications
  • Teaching
  • Factsheets
  • Selected invited lectures
  • Random links
  • Prizes, awards and recognition
  • Social Media / Websites
  • Publications

Warming Stripes for Oxford from 1814-2019

Warming Stripes for Oxford from 1814-2019.

Key drivers of large scale changes in North Atlantic atmospheric and oceanic circulations and their predictability.

Climate dynamics Springer Nature 63:2 (2025) 113

Authors:

Buwen Dong, Yevgeny Aksenov, Ioana Colfescu, Ben Harvey, Joël Hirschi, Simon Josey, Hua Lu, Jenny Mecking, Marilena Oltmanns, Scott Osprey, Jon Robson, Stefanie Rynders, Len Shaffrey, Bablu Sinha, Rowan Sutton, Antje Weisheimer

Abstract:

Significant changes have occurred during the last few decades across the North Atlantic climate system, including in the atmosphere, ocean, and cryosphere. These large-scale changes play a vital role in shaping regional climate and extreme weather events across the UK and Western Europe. This review synthesizes the characteristics of observed large-scale changes in North Atlantic atmospheric and oceanic circulations during past decades, identifies the drivers and physical processes responsible for these changes, outlines projected changes due to anthropogenic warming, and discusses the predictability of these circulations. On multi-decadal time scales, internal variability, anthropogenic forcings (especially greenhouse gases), and natural forcings (such as solar variability and volcanic eruptions) are identified as key contributors to large-scale variability in North Atlantic atmospheric and oceanic circulations. However, there remain many uncertainties regarding the detailed characteristics of these various influences, and in some cases their relative importance. We therefore conclude that a better understanding of these drivers, and more accurate quantification of their relative roles, are crucial for more reliable decadal predictions and projections of regional climate for the North Atlantic and Europe.<h4>Supplementary information</h4>The online version contains supplementary material available at 10.1007/s00382-025-07591-1.
More details from the publisher
More details
More details

Forecast-based attribution for midlatitude cyclones

Copernicus Publications (2025)

Authors:

Shirin Ermis, Nicholas Leach, Sarah Sparrow, Fraser Lott, Antje Weisheimer
More details from the publisher

Towards an operational forecast-based attribution system - beyond isolated events

Copernicus Publications (2025)

Authors:

Nicholas Leach, Shirin Ermis, Olivia Vashti Ayim, Sarah Sparrow, Fraser Lott, Linjing Zhou, Pandora Hope, Dann Mitchell, Antje Weisheimer, Myles Allen
More details from the publisher

The Relative Role of Indian and Pacific Tropical Heating as Seasonal Predictability Drivers for the North Atlantic Oscillation

Journal of Geophysical Research: Atmospheres American Geophysical Union 129:18 (2024) e2024JD041233

Authors:

Retish Senan, Magdalena A Balmaseda, Franco Molteni, Timothy N Stockdale, Antje Weisheimer, Stephanie Johnson, Christopher D Roberts

Abstract:

Understanding the predictability drivers for the North Atlantic Oscillation (NAO) during boreal winter at seasonal time scales remains challenging. This study uses large ensembles with the ECMWF seasonal forecasting system to investigate the relative impact of tropical Indian and Pacific heating on NAO predictability by examining the tropical forcing, teleconnection pathways, and sources of uncertainty. We select three case studies ‐ 1997/98, 2015/16 and 2019/20 ‐ with strong Indian Ocean heating anomalies, but with different El Niño conditions. We show that in 2019/20, with neutral ENSO conditions, Indian Ocean SSTs favor a positive NAO response via stratospheric and tropospheric pathways. In the cases with strong El Niño, we find contrasting results: in 1997/98, the Pacific forcing dominates, producing a negative NAO. In 2015/16, despite the strong El Niño, the Indian Ocean forcing dominates, leading to a positive NAO via intensification of the stratospheric polar vortex (SPV). While the stratospheric pathway exhibits varying responses to Indian Ocean forcing ‐ being weaker in 1997/98 and strongest in 2015/16, the Indian Ocean‐related tropospheric pathway remains robust along the Pacific subtropical jet across years. However, there is destructive interference between teleconnections from Indian and Pacific SST anomalies in both the tropospheric and stratospheric pathways. The competing effects of tropical heating in both basins, uncertainties in the Rossby wave response to tropical heating and SPV variability contribute to uncertainty in seasonal NAO predictions. The flow‐dependent nature of the stratospheric pathway underscores the complexity of seasonal forecast predictability, and the existence of windows of opportunity.
More details from the publisher
Details from ORA
More details

Drivers of the ECMWF SEAS5 seasonal forecast for the hot and dry European summer of 2022

Quarterly Journal of the Royal Meteorological Society Wiley (2024)

Authors:

Matthew Patterson, Daniel J Befort, Christopher H O'Reilly, Antje Weisheimer

Abstract:

The European summer (June–August) 2022 was characterised by warm and dry anomalies across much of the continent, likely influenced by a northward‐shifted jet stream. These general features were well predicted by European Centre for Medium‐Range Weather Forecasts' system 5 seasonal forecast, initialised on May 1. Such successful predictions for European summers are relatively uncommon, particularly for atmospheric circulation. In this study, a set of hindcast experiments is employed to investigate the role that initialisation of the ocean, atmosphere, and land surface played in the 2022 forecast. We find that the trend from external forcing was the strongest contributor to the forecast near‐surface temperature anomalies, with atmospheric circulation and land‐surface interactions playing a secondary role. On the other hand, atmospheric circulation made a strong contribution to precipitation anomalies. Modelled Euro‐Atlantic circulation anomalies in 2022 were consistent with a La Niña‐forced teleconnection from the tropical Pacific. However, a northward jet trend in the model hindcasts with increasing greenhouse gas concentrations also contributed to the predicted circulation anomalies in 2022. In contrast, the observed linear trend in the jet over the past four decades was a southward shift, though it is unclear whether this trend was driven by external forcings or natural variability. Nevertheless, this case study demonstrates that important features of at least some European summers are predictable at the seasonal time‐scale.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet