Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Banner background image

Dr Antje Weisheimer (she)

Principal NCAS Research Fellow

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
Antje.Weisheimer@physics.ox.ac.uk
Telephone: 01865 (2)82441
Robert Hooke Building, room S37
ECMWF
NCAS
  • About
  • Current projects
  • Research
  • Selected Publications
  • Teaching
  • Factsheets
  • Selected invited lectures
  • Random links
  • Prizes, awards and recognition
  • Social Media / Websites
  • Publications

Warming Stripes for Oxford from 1814-2019

Warming Stripes for Oxford from 1814-2019.

Underestimation of Arctic warming trends in sub-seasonal forecasts

Copernicus Publications (2023)

Authors:

Steffen Tietsche, Frederic Vitart, Michael Mayer, Antje Weisheimer, Magdalena Balmaseda
More details from the publisher

Sub-seasonal to decadal predictions in support of climate services

Climate Services Elsevier 30 (2023) 100397

Authors:

Marisol Osman, Daniela IV Domeisen, Andrew W Robertson, Antje Weisheimer
More details from the publisher

A statistical perspective on the signal–to–noise paradox

Quarterly Journal of the Royal Meteorological Society Wiley 149:752 (2023) 911-923

Authors:

Jochen Broecker, Andrew Charlton-Perez, Antje Weisheimer

Abstract:

An anomalous signal-to-noise ratio (also called the signal-to-noise paradox) present in climate models has been widely reported, affecting predictions and projections from seasonal to centennial timescales and encompassing prediction skill from internal processes and external climate forcing. An anomalous signal-to-noise ratio describes a situation where the mean of a forecast ensemble correlates better with the corresponding verification than with its individual ensemble members. This situation has severe implications for climate science, meaning that large ensembles might be required to extract prediction signals. Although a number of possible physical mechanisms for this paradox have been proposed, none has been universally accepted. From a statistical point of view, an anomalous signal-to-noise ratio indicates that forecast ensemble members are not statistically interchangeable with the verification, and an apparent paradox arises only if such an interchangeability is assumed. It will be demonstrated in this study that an anomalous signal-to-noise ratio is a consequence of the relative magnitudes of the variance of the observations, the ensemble mean, and the error of the ensemble mean. By analysing the geometric triangle formed by these three quantities, and given that for typical seasonal forecasting systems both the correlation and the forecast signal are relatively small, it is concluded that an anomalous signal-to-noise ratio should, in fact, be expected in such circumstances.
More details from the publisher
Details from ORA
More details

The link between North Atlantic tropical cyclones and ENSO in seasonal forecasts

(2022)

Authors:

Robert Doane-Solomon, Daniel Befort, Joanne Camp, Kevin Hodges, Antje Weisheimer
More details from the publisher

Prediction and projection of heatwaves

Nature Reviews Earth and Environment Springer Nature 4 (2022) 36-50

Authors:

Daniela Domeisen, Elfatih Eltahir, Erich Fischer, Reto Knutti, Sarah Perkins-Kirkpatrick, Christoph Schaer, Sonia Seneviratne, Antje Weisheimer, Heini Wernli

Abstract:

Heatwaves constitute a major threat to human health and ecosystems. Projected increases in heatwave frequency and severity thus lead to the need for prediction to enhance preparedness and minimize adverse impacts. In this Review, we document current capabilities for heatwave prediction at daily to decadal timescales and outline projected changes under anthropogenic warming. Various local and remote drivers and feedbacks influence heatwave development. On daily timescales, extratropical atmospheric blocking and global land–atmosphere coupling are most pertinent, and on subseasonal to seasonal timescales, soil moisture and ocean surface anomalies contribute. Knowledge of these drivers allows heatwaves to be skilfully predicted at daily to weekly lead times. Predictions are challenging beyond timescales of a few weeks, but tendencies for above-average temperatures can be estimated. Further into the future, heatwaves are anticipated to become more frequent, persistent and intense in nearly all inhabited regions, with trends amplified by soil drying in some areas, especially the mid-latitudes. There is also an increased occurrence of humid heatwaves, especially in southern Asia. A better understanding of the relevant drivers and their model representation, including atmospheric dynamics, atmospheric and soil moisture, and surface cover should be prioritized to improve heatwave prediction and projection.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet