Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Banner background image

Dr Antje Weisheimer (she)

Principal NCAS Research Fellow

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
Antje.Weisheimer@physics.ox.ac.uk
Telephone: 01865 (2)82441
Robert Hooke Building, room S37
ECMWF
NCAS
  • About
  • Current projects
  • Research
  • Selected Publications
  • Teaching
  • Factsheets
  • Selected invited lectures
  • Random links
  • Prizes, awards and recognition
  • Social Media / Websites
  • Publications

Warming Stripes for Oxford from 1814-2019

Warming Stripes for Oxford from 1814-2019.

Improved radio occultation sounding of the Arctic atmosphere using simulations with a high resolution atmospheric model

Physics and Chemistry of the Earth 29:2-3 (2004) 277-286

Authors:

V Kunitsyn, V Zakharov, K Dethloff, A Weisheimer, M Gerding, R Neuber, A Rinke, I Hebestadt

Abstract:

Radio occultation experiments have been simulated for the Arctic region on the basis of the regional atmospheric model HIRHAM4. Irregular structures in the atmosphere produce a violation of the quasi-sphericity in the radio signal propagation and exert a strong influence on the accuracy of atmospheric profiles retrieved by the radio occultation technique. Errors in radio occultation data are spatially localised and associated with gradients in atmospheric structures. Local errors reach 2% in retrieved profiles of refractivity corresponding to an error of 6 K in temperature. Therefore mesoscale variations in atmospheric parameter gradients in a specified region must be taken into account when interpreting radio occultation data. We show, that a correction functional can be developed using the refractivity index field calculated from the regional model in order to improve the radio occultation retrieval of atmospheric parameters. This functional is constructed from instantaneous model outputs, as well as from temporally averaged fields of refractivity using data of the HIRHAM4 model for the Arctic atmosphere. The correction functional derived from monthly averaged data reduced the retrieval errors of refractivity, temperature, and pressure in the troposphere, in particular, temperature retrieval errors are reduced up to 1 K. Application of this kind of functional depends on whether the model used for the construction of the functional is able to simulate the real mesoscale atmospheric structures. © 2004 Elsevier Ltd. All rights reserved.
More details from the publisher
More details

Gradient free descent: Shadowing, and state estimation using limited derivative information

Physica D: Nonlinear Phenomena 190:3-4 (2004) 153-166

Authors:

K Judd, L Smith, A Weisheimer

Abstract:

Shadowing trajectories can play an important role in assessing the reliability of forecasting models, they can also play an important role in providing state estimates for ensemble forecasts. Gradient descent methods provide one approach for obtaining shadowing trajectories, which have been shown to have many useful properties. There remains the important question whether shadowing trajectories can be found in very high-dimensional systems, like weather and climate models. The principle impediment is the need to compute the derivative (or adjoint) of the system dynamics. In this paper we investigate gradient descent methods that use limited derivative information. We demonstrate the methods with an application to a moderately high-dimensional system using no derivative information at all. © 2003 Elsevier B.V. All rights rserved.
More details from the publisher
More details

Internal climate variability in global and regional climate models

CLIMATE IN HISTORICAL TIMES: TOWARDS A SYNTHESIS OF HOLOCENCE PROXY DATA AND CLIMATE MODELS (2004) 365-382

Authors:

D Handorf, W Dorn, K Dethloff, A Rinke, A Weisheimer
More details
More details from the publisher

Nonlinear dynamics of the climate system

CLIMATE IN HISTORICAL TIMES: TOWARDS A SYNTHESIS OF HOLOCENCE PROXY DATA AND CLIMATE MODELS (2004) 13-41

Authors:

K Dethloff, A Rinke, D Handorf, A Weisheimer, W Dorn
More details
More details from the publisher

Extratropical low-frequency variability in a three-level quasi-geostrophic atmospheric model with different spectral resolution

Journal of Geophysical Research: Atmospheres 108:5 (2003)

Authors:

A Weisheimer, MV Kurgansky, K Dethloff, D Handorf

Abstract:

Apart from variations of external forcing components and interactions between climate subsystems, natural atmospheric fluctuations with periods of years, decades and centuries can also be generated by inherent atmospheric dynamical instabilities of the flow. The objective of this study is to investigate the spatial and temporal structure of internal low-frequency atmospheric variability of the Northern Hemisphere using a minimum-complexity model of the extratropical circulation. Here, the main focus is the influence of varying spectral horizontal resolution on the formation of dominant patterns of variability. For this purpose, a three-level quasi-geostrophic atmospheric model with idealized thermal and orographic forcing has been integrated over 1,000 years under perpetual winter conditions with T5, T10, T15, and T21 resolutions. It has been shown that for the crude resolution T5 a rather strong bias occurs, whereas starting with T1O resolution, the nonlinear feedback between large- and small-scale features is reasonably well described. At this resolution a sort of plateau in the model performance has been reached, in respect to both the model climatology and the spatiotemporal structure of variability. Ultralow-frequency variability is most pronounced in the model's stratosphere and is associated with changes in the polar vortex strength and shape caused by vertically propagating planetary waves. Rossby wave trains in the lee of the model large-scale orography are the most dominant structures of long-period fluctuations in the middle troposphere. The results show that interannual- and decadal-scale variations can, in substantial part, be considered as a manifestation of the natural variability of the extratropical atmosphere. The inclusion of a seasonal cycle of the model's diabatic heating increases the interannual and interdecadal variability.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Current page 34
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet