Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Banner background image

Dr Antje Weisheimer (she)

Principal NCAS Research Fellow

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
Antje.Weisheimer@physics.ox.ac.uk
Telephone: 01865 (2)82441
Robert Hooke Building, room S37
ECMWF
NCAS
  • About
  • Current projects
  • Research
  • Selected Publications
  • Teaching
  • Factsheets
  • Selected invited lectures
  • Random links
  • Prizes, awards and recognition
  • Social Media / Websites
  • Publications

Warming Stripes for Oxford from 1814-2019

Warming Stripes for Oxford from 1814-2019.

Arctic and Antarctic ozone layer observations: Chemical and dynamical aspects of variability and long-term changes in the polar stratosphere

Polar Research 19:2 (2000) 193-204

Authors:

M Rex, K Dethloff, D Handorf, A Herber, R Lehmann, R Neuber, J Notholt, A Rinke, P von der Gathen, A Weisheimer, H Gernandt

Abstract:

The altitude dependent variability of ozone in the polar stratosphere is regularly observed by balloon-borne ozonesonde observations at Neumayer Station (70°S) in the Antarctic and at Koldewey Station (79°N) in the Arctic. The reasons for observed seasonal and interannual variability and long-term changes are discussed. Differences between the hemispheres are identified and discussed in light of differing dynamical and chemical conditions. Since the mid-1980s, rapid chemical ozone loss has been recorded in the lower Antarctic stratosphere during the spring season. Using coordinated ozone soundings in some Arctic winters, similar chemical ozone loss rates have been detected related to periods of low temperatures. The currently observed cooling trend of the stratosphere, potentially caused by the increase of anthropogenic greenhouse gases, may further strengthen chemical ozone removal in the Arctic. However, the role of internal climate oscillations in observed temperature trends is still uncertain. First results of a 10 000 year integration of a low order climate model indicate significant internal climate variability, on decadal time scales, that may alter the effect of increasing levels of greenhouse gases in the polar stratosphere.
More details from the publisher
More details

North Atlantic oscillation: Diagnosis and simulation of decadal variability and its long-period evolution

Izvestiya - Atmospheric and Ocean Physics 36:5 (2000) 555-565

Authors:

II Mokhov, AV Eliseev, D Handorf, VK Petukhov, K Dethloff, A Weisheimer, DV Khvorost'yanov

Abstract:

Two 1000-year numerical experiments based on the IFA RAN global climate model, the first with completely interacting atmosphere and ocean and the second with a fixed climatic mean annual cycle of sea surface temperature, are analyzed. In both cases, a quasi-decadal cyclicity (QDC), but with substantially different amplitude-frequency characteristics, is detected for the North Atlantic Oscillation (NAO) in winter. Significant changes in the QDC regimes from one century to another are observed in the model. A comparison of the numerical results with empirical data and reconstructions reveal a fairly good agreement of the QDC amplitude and periods for winter NAO regimes in the model with completely interacting atmosphere and ocean for individual model subperiods on the order of a century. The model results suggest that interdecadal NAO variations of natural origin can be noticeably strengthened in the climate system without any influence of external, in particular, anthropogenic factors. In the case of a fixed annual cycle of SST, the QDC amplitudes are underestimated several times by the model, and no positive correlation is observed between the amplitudes and periods of the NAO QDC in contrast to the empirical data, reconstructions, and the model with completely interacting atmosphere and ocean.
More details

Niederfrequente Variabilität großräumiger atmosphärischer Zirkulationsstrukturen in spektralen Modellen niederer Ordnung. Reports on Polar Research.

AWI (2000) 356

Decadal climate variability in a coupled atmosphere‐ocean climate model of moderate complexity

Journal of Geophysical Research American Geophysical Union (AGU) 104:D22 (1999) 27253-27275
More details from the publisher
More details

Climate variability in a nonlinear atmosphere‐like dynamical system

Journal of Geophysical Research American Geophysical Union (AGU) 103:D20 (1998) 25957-25966

Authors:

K Dethloff, A Weisheimer, A Rinke, D Handorf, MV Kurgansky, W Jansen, P Maaß, P Hupfer
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • Current page 36
  • Page 37
  • Page 38
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet