Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity
Nature Communications Springer Nature 13:1 (2022) 4201
Abstract:
Charge carrier mobility is a fundamental property of semiconductor materials that governs many electronic device characteristics. For metal halide perovskites, a wide range of charge carrier mobilities have been reported using different techniques. Mobilities are often estimated via transient methods assuming an initial charge carrier population after pulsed photoexcitation and measurement of photoconductivity via non-contact or contact techniques. For nanosecond to millisecond transient methods, early-time recombination and exciton-to-free-carrier ratio hinder accurate determination of free-carrier population after photoexcitation. By considering both effects, we estimate long-range charge carrier mobilities over a wide range of photoexcitation densities via transient photoconductivity measurements. We determine long-range mobilities for FA0.83Cs0.17Pb(I0.9Br0.1)3, (FA0.83MA0.17)0.95Cs0.05Pb(I0.9Br0.1)3 and CH3NH3PbI3-xClx polycrystalline films in the range of 0.3 to 6.7 cm2 V−1 s−1. We demonstrate how our data-processing technique can also reveal more precise mobility estimates from non-contact time-resolved microwave conductivity measurements. Importantly, our results indicate that the processing of polycrystalline films significantly affects their long-range mobility.Visualizing macroscopic inhomogeneities in perovskite solar cells
ACS Energy Letters American Chemical Society 7:7 (2022) 2311-2322
Abstract:
Despite the incredible progress made, the highest efficiency perovskite solar cells are still restricted to small areas (<1 cm2). In large part, this stems from a poor understanding of the widespread spatial heterogeneity in devices. Conventional techniques to assess heterogeneities can be time consuming, operate only at microscopic length scales, and demand specialized equipment. We overcome these limitations by using luminescence imaging to reveal large, millimeter-scale heterogeneities in the inferred electronic properties. We determine spatially resolved maps of “charge collection quality”, measured using the ratio of photoluminescence intensity at open and short circuit. We apply these methods to quantify the inhomogeneities introduced by a wide range of transport layers, thereby ranking them by suitability for upscaling. We reveal that top-contacting transport layers are the dominant source of heterogeneity in the multilayer material stack. We suggest that this methodology can be used to accelerate the development of highly efficient, large-area modules, especially through high-throughput experimentation.Utilizing nonpolar organic solvents for the deposition of metal-halide perovskite films and the realization of organic semiconductor/perovskite composite photovoltaics
ACS Energy Letters American Chemical Society 7:2022 (2022) 1246-1254
Abstract:
Having captivated the research community with simple fabrication processes and staggering device efficiencies, perovskite-based optoelectronics are already on the way to commercialization. However, one potential obstacle to this commercialization is the almost exclusive use of toxic, highly coordinating, high boiling point solvents to make perovskite precursor inks. Herein, we demonstrate that nonpolar organic solvents, such as toluene, can be combined with butylamine to form an effective solvent for alkylammonium-based perovskites. Beyond providing broader solvent choice, our finding opens the possibility of blending perovskite inks with a wide range of previously incompatible materials, such as organic molecules, polymers, nanocrystals, and structure-directing agents. As a demonstration, using this solvent, we blend the perovskite ink with 6,6-phenyl-C-61-butyric acid methyl ester and show improved perovskite crystallization and device efficiencies. This processing route may enable a myriad of new possibilities for tuning the active layers in efficient photovoltaics, light-emitting diodes, and other semiconductor devices.Highly absorbing lead-free semiconductor Cu2AgBiI6 for photovoltaic applications from the quaternary CuI-AgI-BiI3 phase space
Journal of the American Chemical Society American Chemical Society 143:10 (2021) 3983-3992
Abstract:
Since the emergence of lead halide perovskites for photovoltaic research, there has been mounting effort in the search for alternative compounds with improved or complementary physical, chemical, or optoelectronic properties. Here, we report the discovery of Cu2AgBiI6: a stable, inorganic, lead-free wide-band-gap semiconductor, well suited for use in lead-free tandem photovoltaics. We measure a very high absorption coefficient of 1.0 × 105 cm–1 near the absorption onset, several times that of CH3NH3PbI3. Solution-processed Cu2AgBiI6 thin films show a direct band gap of 2.06(1) eV, an exciton binding energy of 25 meV, a substantial charge-carrier mobility (1.7 cm2 V–1 s–1), a long photoluminescence lifetime (33 ns), and a relatively small Stokes shift between absorption and emission. Crucially, we solve the structure of the first quaternary compound in the phase space among CuI, AgI and BiI3. The structure includes both tetrahedral and octahedral species which are open to compositional tuning and chemical substitution to further enhance properties. Since the proposed double-perovskite Cs2AgBiI6 thin films have not been synthesized to date, Cu2AgBiI6 is a valuable example of a stable Ag+/Bi3+ octahedral motif in a close-packed iodide sublattice that is accessed via the enhanced chemical diversity of the quaternary phase space.Crystallographic, optical, and electronic properties of the Cs2AgBi1-xInxBr6 double perovskite: understanding the fundamental photovoltaic efficiency challenges
ACS Energy Letters American Chemical Society 6:3 (2021) 1073-1081