Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Bernard Wenger

Long Term Visitor

Sub department

  • Condensed Matter Physics
bernard.wenger@physics.ox.ac.uk
Telephone: 01865 (2) 72401
Robert Hooke Building, room G20
  • About
  • Publications

Controlling mesopore size and processability of transparent enzyme-loaded silica films for biosensing applications.

ACS applied materials & interfaces 7:4 (2015) 2960-2971

Authors:

Oswaldo Pérez-Anguiano, Bernard Wenger, Raphaël Pugin, Heinrich Hofmann, Emmanuel Scolan

Abstract:

Silica-based nanoporous thin films including large mesopores are relevant as enzyme supports for applications in biosensing. The diffusion and immobilization of large biomolecules such as enzymes in such porous films require the presence of large mesopores. Creating such morphologies based on a bottom-up synthesis using colloidal templates is a challenge in view of the combination of desired material properties and the robustness of the casting process for the fabrication of thin films. Here a strategy to reproducibly synthesize transparent porous silica thin films with submicrometer thickness and homogeneously distributed porosity is presented. For this purpose, polystyrene-poly-2-vinylpyridine (PS-P2VP) amphiphilic block copolymers are used as porogenic templates. Low-chain alcohols are employed as both selective solvents for the P2VP blocks and reaction media for silica synthesis. Rheology measurements reveal a strong influence of the block copolymer length on the behavior of PS-P2VP micelles in suspension. The pore distribution and accessibility into the film are controlled by adjusting the silica to block copolymer weight ratio. The solvent choice is shown to control not only the micelle size and the generated pore morphology but also the structural homogeneity of the films. Finally, the suitability of the synthesized films as supports for enzymes is tested using a model enzyme, horseradish peroxidase EC 1.11.1.7. Our approach is innovative, robust, and reproducible and provides a convenient alternative to synthesize large mesopores up to small macropores (20-100 nm) in nanostructured thin films with applications in biosensing and functional coatings.
More details from the publisher
More details
More details

Smart Textiles with Biosensing Capabilities

Advances in Science and Technology Trans Tech Publications 80 (2013) 129-135

Authors:

Stéphanie Pasche, Bastien Schyrr, Bernard Wenger, Emmanuel Scolan, Réal Ischer, Guy Voirin
More details from the publisher

Au-labeled antibodies to enhance the sensitivity of a refractometric immunoassay: detection of cocaine.

Biosensors & bioelectronics 34:1 (2012) 94-99

Authors:

Bernard Wenger, Karl Kugelbrey, Hui Gao, Hans Sigrist, Guy Voirin

Abstract:

An integrated platform for a very sensitive detection of cocaine based on a refractometric biosensor is demonstrated. The system uses a waveguide grating biosensor functionalized with a cocaine multivalent antigen-carrier protein conjugate. The immunoassay scheme consists of the competitive binding of cocaine-specific antibodies to the immobilized conjugates. A 1000-fold enhancement of the sensor's sensitivity is achieved when using gold conjugated monoclonal antibodies instead of free antibodies. Together with the optimization of the assay conditions, the setup is designed for a quick identification of narcotics using automated sampling. The results show that the presence of cocaine in a liquid sample could be identified down to a concentration of 0.7 nM within one minute. This value can be reduced even further when longer binding time is allowed (0.2 nM after 15 min). Application of the system to detection of narcotics at airport security control points is discussed.
More details from the publisher
More details
More details

Design of Nanostructured Sol-Gel Coatings for (Bio)sensing Applications

2011 IEEE SENSORS (2011) 707-710

Authors:

E Scolan, R Steiger, R Pugin, B Schyrr, S Pasche, B Wenger, G Voirin
More details

Integrated optical biosensor for in-line monitoring of cell cultures.

Biosensors & bioelectronics 26:4 (2010) 1478-1485

Authors:

Stéphanie Pasche, Bernard Wenger, Réal Ischer, Marta Giazzon, Silvia Angeloni, Guy Voirin

Abstract:

An analytical detection platform was developed to evaluate the induced toxicity in cell cultures exposed to foreign agents like growth factors or nanoparticles. Connecting a biosensing detection device to the cell culture flasks allows analyzing the composition of cell medium in real-time. The analysis relies on the quantification of inflammatory cytokines released by cells into the cell culture medium, by means of solid-phase immunoassays analyzed with the wavelength interrogated optical sensing (WIOS) instrument. A fluidic system for in situ measurements allows detecting cytokines in real-time, with a sensitivity of 1-100 ng/mL depending on the cytokine. In addition, integration of an in-line optical absorbance measurement unit, in combination with the standard AB cell proliferation assay, provides information on the cell viability in the culture. Fluidic connections between the cell culture flasks, the optical biosensor and the absorbance measurement unit simultaneously allow quantifying up to three cytokines (interleukin 8, interleukin 6 and the monocyte chemotactic protein), assessing cellular proliferation, and thus discriminating between naïve cells and cells exposed to foreign agents such as growth factors (tumor necrosis factor alpha) or nanoparticles. This analytical tool presents a high potential for assessing the cytotoxicity of nanoparticles and other chemicals in vitro.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet