Controlling mesopore size and processability of transparent enzyme-loaded silica films for biosensing applications.
ACS applied materials & interfaces 7:4 (2015) 2960-2971
Abstract:
Silica-based nanoporous thin films including large mesopores are relevant as enzyme supports for applications in biosensing. The diffusion and immobilization of large biomolecules such as enzymes in such porous films require the presence of large mesopores. Creating such morphologies based on a bottom-up synthesis using colloidal templates is a challenge in view of the combination of desired material properties and the robustness of the casting process for the fabrication of thin films. Here a strategy to reproducibly synthesize transparent porous silica thin films with submicrometer thickness and homogeneously distributed porosity is presented. For this purpose, polystyrene-poly-2-vinylpyridine (PS-P2VP) amphiphilic block copolymers are used as porogenic templates. Low-chain alcohols are employed as both selective solvents for the P2VP blocks and reaction media for silica synthesis. Rheology measurements reveal a strong influence of the block copolymer length on the behavior of PS-P2VP micelles in suspension. The pore distribution and accessibility into the film are controlled by adjusting the silica to block copolymer weight ratio. The solvent choice is shown to control not only the micelle size and the generated pore morphology but also the structural homogeneity of the films. Finally, the suitability of the synthesized films as supports for enzymes is tested using a model enzyme, horseradish peroxidase EC 1.11.1.7. Our approach is innovative, robust, and reproducible and provides a convenient alternative to synthesize large mesopores up to small macropores (20-100 nm) in nanostructured thin films with applications in biosensing and functional coatings.Smart Textiles with Biosensing Capabilities
Advances in Science and Technology Trans Tech Publications 80 (2013) 129-135
Au-labeled antibodies to enhance the sensitivity of a refractometric immunoassay: detection of cocaine.
Biosensors & bioelectronics 34:1 (2012) 94-99
Abstract:
An integrated platform for a very sensitive detection of cocaine based on a refractometric biosensor is demonstrated. The system uses a waveguide grating biosensor functionalized with a cocaine multivalent antigen-carrier protein conjugate. The immunoassay scheme consists of the competitive binding of cocaine-specific antibodies to the immobilized conjugates. A 1000-fold enhancement of the sensor's sensitivity is achieved when using gold conjugated monoclonal antibodies instead of free antibodies. Together with the optimization of the assay conditions, the setup is designed for a quick identification of narcotics using automated sampling. The results show that the presence of cocaine in a liquid sample could be identified down to a concentration of 0.7 nM within one minute. This value can be reduced even further when longer binding time is allowed (0.2 nM after 15 min). Application of the system to detection of narcotics at airport security control points is discussed.Design of Nanostructured Sol-Gel Coatings for (Bio)sensing Applications
2011 IEEE SENSORS (2011) 707-710
Integrated optical biosensor for in-line monitoring of cell cultures.
Biosensors & bioelectronics 26:4 (2010) 1478-1485