Towards unification of perovskite stability and photovoltaic performance assessment
(2020)
Charge-carrier trapping dynamics in bismuth-doped thin films of MAPbBr3 perovskite
Journal of Physical Chemistry Letters American Chemical Society 11:9 (2020) 3681-3688
Abstract:
Successful chemical doping of metal halide perovskites with small amounts of heterovalent metals has attracted recent research attention because of its potential to improve long-term material stability and tune absorption spectra. However, some additives have been observed to impact negatively on optoelectronic properties, highlighting the importance of understanding charge-carrier behavior in doped metal halide perovskites. Here, we present an investigation of charge-carrier trapping and conduction in films of MAPbBr3 perovskite chemically doped with bismuth. We find that the addition of bismuth has no effect on either the band gap or exciton binding energy of the MAPbBr3 host. However, we observe a substantial enhancement of electron-trapping defects upon bismuth doping, which results in an ultrafast charge-carrier decay component, enhanced infrared emission, and a notable decrease of charge-carrier mobility. We propose that such defects arise from the current approach to Bi-doping through addition of BiBr3, which may enhance the presence of bromide interstitials.Elucidating the Role of a Tetrafluoroborate‐Based Ionic Liquid at the n‐Type Oxide/Perovskite Interface
Advanced Energy Materials Wiley 10:4 (2020)
Revealing the stoichiometric tolerance of lead trihalide perovskite thin films
Chemistry of Materials American Chemical Society 32:1 (2019) 114-120
Abstract:
The relationship between the chemical composition of lead halide perovskite materials and their crystal and electronic structure is not yet sufficiently understood, despite its fundamental importance. Here, we determine the crystal and electronic structure of cesium lead bromide (CsPbBr3) while deliberately varying the cesium content. At substoichiometric concentrations of cesium, there are large variations in the frontier electronic structure of CsPbBr3 with only small variations in Cs content. We observe a critical point after which large variations in the chemical composition of CsPbBr3 result in comparably small changes in valence and conduction band energies. This behavior is starkly different from that of traditional semiconductors, such as InGaAs and GaInP, and demonstrates an impressive energetic tolerance of CsPbBr3 to large changes in its stoichiometry. This observation helps us to understand why a broad range of relatively uncontrolled, simple processing methodologies can deliver highly functional metal halide perovskite thin films.Oxidative passivation of metal halide perovskites
Joule Cell Press 3:11 (2019) 2716-2731