The dynamical influence of the Atlantic Multidecadal Oscillation on continental climate
Journal of Climate American Meteorological Society 30:18 (2017) 7213-7230
Abstract:
The Atlantic multidecadal oscillation (AMO) in sea surface temperature (SST) has been shown to influence the climate of the surrounding continents. However, it is unclear to what extent the observed impact of the AMO is related to the thermodynamical influence of the SST variability or the changes in large-scale atmospheric circulation. Here, an analog method is used to decompose the observed impact of the AMO into dynamical and residual components of surface air temperature (SAT) and precipitation over the adjacent continents. Over Europe the influence of the AMO is clearest during the summer, when the warm SAT anomalies are interpreted to be primarily thermodynamically driven by warm upstream SST anomalies but also amplified by the anomalous atmospheric circulation. The overall precipitation response to the AMO in summer is generally less significant than the SAT but is mostly dynamically driven. The decomposition is also applied to the North American summer and the Sahel rainy season. Both dynamical and residual influences on the anomalous precipitation over the Sahel are substantial, with the former dominating over the western Sahel region and the latter being largest over the eastern Sahel region. The results have potential implications for understanding the spread in AMO variability in coupled climate models and decadal prediction systems.Variability in seasonal forecast skill of Northern Hemisphere winters over the twentieth century
Geophysical Research Letters American Geophysical Union (AGU) (2017)
Abstract:
©2017. American Geophysical Union. All Rights Reserved. Seasonal hindcast experiments, using prescribed sea surface temperatures (SSTs), are analyzed for Northern Hemisphere winters from 1900 to 2010. Ensemble mean Pacific/North American index (PNA) skill varies dramatically, dropping toward zero during the mid-twentieth century, with similar variability in North Atlantic Oscillation (NAO) hindcast skill. The PNA skill closely follows the correlation between the observed PNA index and tropical Pacific SST anomalies. During the mid-century period the PNA and NAO hindcast errors are closely related. The drop in PNA predictability is due to mid-century negative PNA events, which were not forced in a predictable manner by tropical Pacific SST anomalies. Overall, negative PNA events are less predictable and seem likely to arise more from internal atmospheric variability than positive PNA events. Our results suggest that seasonal forecasting systems assessed over the recent 30 year period may be less skillful in periods, such as the mid-twentieth century, with relatively weak forcing from tropical Pacific SST anomalies.Eddy-driven jet sensitivity to diabatic heating in an idealized GCM
Journal of Climate American Meteorological Society 30:16 (2017) 6413-6431
Abstract:
The eddy-driven jet is studied using a dry idealized model to determine its sensitivity to thermal forcings. The jet latitude, speed and variability are investigated under a series of Gaussian patch thermal forcing simulations applied systematically on a latitude-sigma grid in the troposphere. This work builds on previous studies by isolating the responses of the jet speed and latitude as opposed to combining them into a single annular mode index. It also explores the sensitivity of the jet to much smaller spatial heatings rather than applying forcing patterns to simulate anthropogenic climate change, as the size and magnitude of the forcings due to anthropogenic climate change are uncertain. The jet speed and latitude are found to have different sensitivity distributions from each other, which also vary between summer and winter. A simple mechanistic understanding of these sensitivities is presented by considering how the individual thermal forcings modify mean isentropic surfaces. In the cases analysed, the jet response to forcing scales approximately linearly with the strength of the forcing, and when forcings are applied in combination. The findings show a rich latitude-pressure distribution of jet sensitivities to thermal forcings, which will aid interpretation of jet responses in a changing climate. Furthermore, they highlight the areas where uncertainty needs to be reduced in the size and position of expected anthropogenic forcings, in order that the uncertainty in changes of the eddy-driven jet can be reduced.Low frequency nonlinearity and regime behavior in the northern hemisphere extra-tropical atmosphere
Reviews of Geophysics American Geophysical Union 55:1 (2017) 199-234
Abstract:
The extra-tropical atmosphere is characterized by robust circulations which have time scales longer than that associated with developing baroclinic systems but shorter than a season. Such low frequency variability is governed to a large extent by non-linear dynamics, and hence is chaotic. A useful aspect of this low-frequency circulation is that it can often be described by just a few quasi-stationary regime states, broadly defined as recurrent or persistent large scale structures, that exert a significant impact on the probability of experiencing extreme surface weather conditions. We review a variety of techniques for identifying circulation regimes from reanalysis and numerical model output. While various techniques often yield similar regime circulation patterns, they offer different perspectives on the regimes. The regimes themselves are manifest in planetary scale patterns. They affect the structure of synoptic scale patterns. Extra-tropical flow regimes have been identified in simplified atmospheric models and comprehensive coupled climate models and in reanalysis data sets. It is an ongoing challenge to accurately model these regime states and high horizontal resolutions are often needed to accurately reproduce them. The regime paradigm helps to understand the response to external forcing on a variety of time scales, has been helpful in categorizing a large number of weather types and their effect on local conditions, and is useful in downscaling. Despite their usefulness, there is a debate on the \non-equivocal" and systematic existence of these nonlinear circulation regimes. We review our current understanding of the nonlinear and regime paradigms and suggest future research.Impact of Atmospheric Blocking on South America in Austral Summer
Journal of Climate American Meteorological Society 30:5 (2017) 1821-1837