Eleven-year solar cycle signal in the NAO and Atlantic/European blocking
Quarterly Journal of the Royal Meteorological Society John Wiley & Sons Ltd 142:698 (2016) 1890-1903
Abstract:
The 11-year solar cycle signal in December-January-February (DJF) averaged mean sea level pressure (SLP) and Atlantic / European blocking frequency is examined using multi-linear regression with indices to represent variability associated with the solar cycle, volcanic eruptions, the El Nino Southern Oscillation (ENSO) and the Atlantic Multi-decadal Oscillation (AMO). Results from a previous 11-year solar cycle signal study of the period 1870–2010 (140 years; ~13 solar cycles) that suggested a 3–4 year lagged signal in SLP over the Atlantic are confirmed by analysis of a much longer reconstructed dataset for the period 1660–2010 (350 years; ~32 solar cycles). Apparent discrepancies between earlier studies are resolved and stem primarily from the lagged nature of the response and differences between early and late winter responses. Analysis of the separate winter months provide supporting evidence for two mechanisms of influence, one operating via the atmosphere that maximises in late winter at 0–2 years lags and one via the mixed-layer ocean that maximises in early winter at 3–4 year lags. Corresponding analysis of DJF-averaged Atlantic / European blocking frequency shows a highly statistically significant signal at ~1-year lag that originates primarily from the late winter response. The 11-year solar signal in DJF blocking frequency is compared with other known influences from ENSO and the AMO and found to be as large in amplitude and have a larger region of statistical significance.Annular modes and apparent eddy feedbacks in the Southern Hemisphere
Geophysical Research Letters American Geophysical Union (AGU) (2016)
Abstract:
Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be a↵ected by non-stationarity. We highlight a pronounced quasi-two-year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for non-stationarity. We then investigate the consequences of this non-stationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to non-stationary interannual variability external to any potential feedback process in the mid-latitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and re-analysis data as well as for understanding the mechanisms underlying variations in the zonal wind.Storm tracks, blocking, and climate change: a review
Chapter in Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, Cambridge University Press (CUP) (2016) 113-121
The signature of low frequency oceanic forcing in the Atlantic Multidecadal Oscillation
Geophysical Research Letters American Geophysical Union 43:6 (2016) 2810-2818
Abstract:
The Atlantic Multidecadal Oscillation (AMO) significantly influences the climate of the surrounding continents and has previously been attributed to variations in the Atlantic Meridional Overturning Circulation. Recently, however, similar multidecadal variability was reported in climate models without ocean circulation variability. We analyse the relationship between turbulent heat fluxes and SSTs over the midlatitude North Atlantic in observations and coupled climate model simulations, both with and without ocean circulation variability. SST anomalies associated with the AMO are positively correlated with heat fluxes on decadal time-scales in both observations and models with varying ocean circulation, whereas in models without ocean circulation variability the anomalies are negatively correlated when heat flux anomalies lead. These relationships are captured in a simple stochastic model and rely crucially on low frequency forcing of SST. The fully coupled models that better capture this signature more effectively reproduce the observed impact of the AMO on European summertime temperatures.Robust Future Changes in Temperature Variability under Greenhouse Gas Forcing and the Relationship with Thermal Advection
Journal of Climate American Meteorological Society 29:6 (2016) 2221-2236