Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces.
Langmuir 23:11 (2007) 6019-6032
Abstract:
We investigate contact angle hysteresis on chemically patterned and superhydrophobic surfaces, as the drop volume is quasistatically increased and decreased. We consider both two (cylindrical drops) and three (spherical drops) dimensions using analytical and numerical approaches to minimize the free energy of the drop. In two dimensions, we find, in agreement with other authors, a slip, jump, stick motion of the contact line. In three dimensions, this behavior persists, but the position and magnitude of the contact line jumps are sensitive to the details of the surface patterning. In two dimensions, we identify analytically the advancing and receding contact angles on the different surfaces, and we use numerical insights to argue that these provide bounds for the three-dimensional cases. We present explicit simulations to show that a simple average over the disorder is not sufficient to predict the details of the contact angle hysteresis and to support an explanation for the low contact angle hysteresis of suspended drops on superhydrophobic surfaces.Controlling drop size and polydispersity using chemically patterned surfaces.
Langmuir 23:2 (2007) 956-959
Abstract:
We explore numerically the feasibility of using chemical patterning to control the size and polydispersity of micrometer-scale drops. The simulations suggest that it is possible to sort drops by size or wetting properties by using an array of hydrophilic stripes of different widths. We also demonstrate that monodisperse drops can be generated by exploiting the pinning of a drop on a hydrophilic stripe. Our results follow from using a lattice Boltzmann algorithm to solve the hydrodynamic equations of motion of the drops and demonstrate the applicability of this approach as a design tool for micofluidic devices with chemically patterned surfaces.Hydrodynamics and rheology of active liquid crystals: A numerical investigation
PHYSICAL REVIEW LETTERS 98:11 (2007) ARTN 118102