Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Polymer collapse in the presence of hydrodynamic interactions.

Eur Phys J E Soft Matter 9:1 (2002) 63-66

Authors:

N Kikuchi, A Gent, JM Yeomans

Abstract:

We investigate numerically the dynamical behaviour of a polymer chain collapsing in a dilute solution. The rate of collapse is measured with and without the presence of hydrodynamic interactions. We find that hydrodynamic interactions both accelerate polymer collapse and alter the folding pathway.
More details from the publisher
More details

Modeling nematohydrodynamics in liquid crystal devices

COMPUT PHYS COMMUN 147:1-2 (2002) 7-12

Authors:

G Toth, C Denniston, JM Yeomans

Abstract:

We formulate a lattice Boltzmann algorithm which solves the hydrodynamic equations of motion for nematic liquid crystals. The applicability of the approach is demonstrated by presenting results for two liquid crystal devices where flow has an important role to play in the switching. (C) 2002 Elsevier Science B.V. All rights reserved.
More details from the publisher

Hydrodynamics of domain growth in nematic liquid crystals

(2002)

Authors:

Geza Toth, Colin Denniston, JM Yeomans
More details from the publisher

Modelling nematohydrodynamics in liquid crystal devices

(2002)

Authors:

Geza Toth, Colin Denniston, JM Yeomans
More details from the publisher

Domain motion in confined liquid crystals

J STAT PHYS 107:1-2 (2002) 187-202

Authors:

C Denniston, G Toth, JM Yeomans

Abstract:

We extend a lattice Boltzmann algorithm of liquid crystal hydrodynamics to include an applied electric field. The approach solves the equations of motion written in terms of a tensor order parameter. Back-flow effects and the hydrodynamics of topological defects are included. We investigate some of the dynamics relevant to liquid crystal devices; in particular defect-mediated motion of domain walls relevant to the nucleation of states useful in pi-cells. An anisotropy in the domain wall velocity is seen because defects of different topology couple differently to the flow field.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • Current page 82
  • Page 83
  • Page 84
  • Page 85
  • Page 86
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet