Direct observation and evolution of electronic coupling between organic semiconductors
Physical Review Materials American Physical Society 5:1 (2021) 015601
Abstract:
The electronic wave functions of an atom or molecule are affected by its interactions with its environment. These interactions dictate electronic and optical processes at interfaces, and is especially relevant in the case of thin film optoelectronic devices such as organic solar cells. In these devices, charge transport and interfaces between multiple layers occur along the thickness or vertical direction, and thus such electronic interactions between different molecules—same or different—are crucial in determining the device properties. Here, we introduce an in situ spectroscopic ellipsometry data analysis method called differential analysis in real time (DART) with the ability to directly probe electronic coupling due to intermolecular interactions along the thickness direction using vacuum-deposited organic semiconductor thin films as a model system. The analysis, which does not require any model fitting, reveals direct observations of electronic coupling between frontier orbitals under optical excitations leading to delocalization of the corresponding electronic wave functions with thickness or, equivalently, number of molecules away from the interface in C60 and MeO-TPD deposited on an insulating substrate ( Si O 2 ) . Applying the same methodology for C60 deposited on phthalocyanine thin films, the analyses shows strong, anomalous features—in comparison to C60 deposited on Si O 2 —of the electronic wave functions corresponding to specific excitation energies in C60 and phthalocyanines. Translation of such interactions in terms of dielectric constants reveals plasmonic type resonance absorptions resulting from oscillations of the excited state wave functions between the two materials across the interface. Finally, reproducibility, angstrom-level sensitivity, and simplicity of the method are highlighted showcasing its applicability for studying electronic coupling between any vapor-deposited material systems where real-time measurements during thin film growth are possible.Molecular doped organic semiconductor crystals for optoelectronic device applications
Journal of Materials Chemistry C 8:43 (2020) 14996-15008
Abstract:
© The Royal Society of Chemistry. For semiconductors, doping is an efficient approach to tune their energy bandgaps, charge transport, and optical properties which could enable the improvement of the corresponding performances and open up the possibility of multifunction integration. Recently, significant advances have been achieved in molecular doped organic semiconductors, especially doped organic semiconductor single crystals (OSSCs) which have features of well-defined packing structures, long-range molecular orders, and low-density defects for fundamental studies and improved properties. In this review, we will give a summary of the exciting progress of molecular doped OSSCs from the aspects of selection criteria of molecular dopants, general growth methods, and resulting optoelectronic properties as well as their applications in optoelectronic devices. Finally, a brief conclusion is given with challenges and perspectives of molecular doped OSSCs and their related promising research directions in this field. This journal isThe role of charge recombination to spin-triplet excitons in non-fullerene acceptor organic solar cells
(2020)
The Elusive Nature of Carbon Nanodot Fluorescence: An Unconventional Perspective
The Journal of Physical Chemistry C American Chemical Society (ACS) 124:40 (2020) 22314-22320
Molecular Quadrupole Moments Promote Ground-State Charge Generation in Doped Organic Semiconductors
ADVANCED FUNCTIONAL MATERIALS (2020) ARTN 2004600