Publisher Correction: High irradiance performance of metal halide perovskites for concentrator photovoltaics

Nature Energy Springer Nature America, Inc (2018)

Authors:

Z Wang, Q Lin, B Wenger, Mark Christoforo, Y-H Lin, MT Klug, MICHAEL Johnston, LAURA Herz, HJ Snaith

Abstract:

© 2018, Springer Nature Limited. When this Article was originally published, an old version of the associated Supplementary Information file was uploaded. This has now been replaced.

Hole Transport in Low-Donor-Content Organic Solar Cells.

The journal of physical chemistry letters (2018) 5496-5501

Authors:

Donato Spoltore, Andreas Hofacker, Johannes Benduhn, Sascha Ullbrich, Mathias Nyman, Olaf Zeika, Sebastian Schellhammer, Yeli Fan, Ivan Ramirez, Stephen Barlow, Moritz Riede, Seth R Marder, Frank Ortmann, Koen Vandewal

Abstract:

Organic solar cells with an electron donor diluted in a fullerene matrix have a reduced density of donor-fullerene contacts, resulting in decreased free-carrier recombination and increased open-circuit voltages. However, the low donor concentration prevents the formation of percolation pathways for holes. Notwithstanding, high (>75%) external quantum efficiencies can be reached, suggesting an effective hole-transport mechanism. Here, we perform a systematic study of the hole mobilities of 18 donors, diluted at ∼6 mol % in C60, with varying frontier energy level offsets and relaxation energies. We find that hole transport between isolated donor molecules occurs by long-range tunneling through several fullerene molecules, with the hole mobilities being correlated to the relaxation energy of the donor. The transport mechanism presented in this study is of general relevance to bulk heterojunction organic solar cells where mixed phases of fullerene containing a small fraction of a donor material or vice versa are present as well.

Superexchange pathways stabilize the magnetic coupling of MnPc with Co in a spin interface mediated by graphene

Physical Review B American Physical Society (APS) 98:11 (2018) 115412

Authors:

Giulia Avvisati, Pierluigi Gargiani, Pierluigi Mondelli, Francesco Presel, Alessandro Baraldi, Maria Grazia Betti

Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency

Molecular Systems Design and Engineering Royal Society of Chemistry 3:5 (2018) 741-747

Authors:

F Pulvirenti, B Wegner, Nakita K Noel, Giulio Mazzotta, R Hill, Jay B Patel, Laura M Herz, Michael B Johnston, Moritz K Riede, Henry J Snaith, N Koch, S Barlow

Abstract:

To date, the most efficient hybrid metal halide peroskite solar cells employ TiO2 as electron-transporting material (ETM), making these devices unstable under UV light exposure. Replacing TiO2 with fullerene derivatives has been shown to result in improved electronic contact and increased device lifetime, making it of interest to assess whether similar improvements can be achieved by using other organic semiconductors as ETMs. In this work, we investigate perylene-3,4:9,10-tetracarboxylic bis(benzimidazole) as a vacuum-processable ETM, and we minimize electron-collection losses at the electron-selective contact by depositing pentamethylcyclopentadienyl cyclopentadienyl rhodium dimer, (RhCp*Cp)2, on fluorinated tin oxide. With (RhCp*Cp)2 as an interlayer, ohmic contacts can be formed, there is interfacial doping of the ETM, and stabilized power conversion efficiencies of up to 14.2% are obtained.

High irradiance performance of metal halide perovskites for concentrator photovoltaics

Nature Energy Nature Publishing Group 3 (2018) 855-861

Authors:

Zhiping Wang, Qianqian Lin, Bernard Wenger, Mark Greyson Christoforo, Yen-Hung Lin, Matthew T Klug, Michael B Johnston, Laura M Herz, Henry J Snaith

Abstract:

Traditionally, III–V multi-junction cells have been used in concentrator photovoltaic (CPV) applications, which deliver extremely high efficiencies but have failed to compete with ‘flat-plate’ silicon technologies owing to cost. Here, we assess the feasibility of using metal halide perovskites for CPVs, and we evaluate their device performance and stability under concentrated light. Under simulated sunlight, we achieve a peak efficiency of 23.6% under 14 Suns (that is, 14 times the standard solar irradiance), as compared to 21.1% under 1 Sun, and measure 1.26 V open-circuit voltage under 53 Suns, for a material with a bandgap of 1.63 eV. Importantly, our encapsulated devices maintain over 90% of their original efficiency after 150 h aging under 10 Suns at maximum power point. Our work reveals the potential of perovskite CPVs, and may lead to new PV deployment strategies combining perovskites with low-concentration factor and lower-accuracy solar tracking systems.