Evidence for production of single top quarks
Physical Review D - Particles, Fields, Gravitation and Cosmology 78:1 (2008)
Authors:
VM Abazov, B Abbott, M Abolins, BS Acharya, M Adams, T Adams, E Aguilo, SH Ahn, M Ahsan, GD Alexeev, G Alkhazov, A Alton, G Alverson, GA Alves, M Anastasoaie, LS Ancu, T Andeen, S Anderson, MS Anzelc, M Aoki, Y Arnoud, M Arov, M Arthaud, A Askew, B Åsman, ACS Assis Jesus, O Atramentov, C Avila, C Ay, F Badaud, A Baden, L Bagby, B Baldin, DV Bandurin, P Banerjee, S Banerjee, E Barberis, AF Barfuss, P Bargassa, P Baringer, J Barreto, JF Bartlett, U Bassler, D Bauer, S Beale, A Bean, M Begalli, M Begel, C Belanger-Champagne, L Bellantoni, A Bellavance, JA Benitez, SB Beri, G Bernardi, R Bernhard, I Bertram, M Besançon, R Beuselinck, VA Bezzubov, PC Bhat, V Bhatnagar, C Biscarat, G Blazey, F Blekman, S Blessing, D Bloch, K Bloom, A Boehnlein, D Boline, TA Bolton, EE Boos, G Borissov, T Bose, A Brandt, R Brock, G Brooijmans, A Bross, D Brown, NJ Buchanan, D Buchholz, M Buehler, V Buescher, V Bunichev, S Burdin, S Burke, TH Burnett, CP Buszello, JM Butler, P Calfayan, S Calvet, J Cammin, W Carvalho, BCK Casey, H Castilla-Valdez, S Chakrabarti, D Chakraborty, K Chan, KM Chan, A Chandra, F Charles
Abstract:
We present first evidence for the production of single top quarks in the D0 detector at the Fermilab Tevatron pp̄ collider. The standard model predicts that the electroweak interaction can produce a top quark together with an antibottom quark or light quark, without the antiparticle top-quark partner that is always produced from strong-coupling processes. Top quarks were first observed in pair production in 1995, and since then, single top-quark production has been searched for in ever larger data sets. In this analysis, we select events from a 0.9fb-1 data set that have an electron or muon and missing transverse energy from the decay of a W boson from the top-quark decay, and two, three, or four jets, with one or two of the jets identified as originating from a b hadron decay. The selected events are mostly backgrounds such as W+jets and tt̄ events, which we separate from the expected signals using three multivariate analysis techniques: boosted decision trees, Bayesian neural networks, and matrix-element calculations. A binned likelihood fit of the signal cross section plus background to the data from the combination of the results from the three analysis methods gives a cross section for single top-quark production of σ(pp̄→tb+X,tqb+X)=4.7±1.3pb. The probability to measure a cross section at this value or higher in the absence of signal is 0.014%, corresponding to a 3.6 standard deviation significance. The measured cross section value is compatible at the 10% level with the standard model prediction for electroweak top-quark production. We use the cross section measurement to directly determine the Cabibbo-Kobayashi-Maskawa quark mixing matrix element that describes the Wtb coupling and find |Vtbf1L|=1.31-0.21+0.25, where f1L is a generic vector coupling. This model-independent measurement translates into 0.68<|Vtb|≤1 at the 95% C.L. in the standard model. © 2008 The American Physical Society.