AION: An Atom Interferometer Observatory and Network

Authors:

L Badurina, E Bentine, D Blas, K Bongs, D Bortoletto, T Bowcock, K Bridges, W Bowden, O Buchmueller, C Burrage, J Coleman, G Elertas, J Ellis, C Foot, V Gibson, Mg Haehnelt, T Harte, S Hedges, R Hobson, M Holynski, T Jones, M Langlois, S Lellouch, M Lewicki, R Maiolino, P Majewski, S Malik, J March-Russell, C McCabe, D Newbold, B Sauer, U Schneider, I Shipsey, Y Singh, Ma Uchida, T Valenzuela, M van der Grinten, V Vaskonen, J Vossebeld, D Weatherill, I Wilmut

Abstract:

We outline the experimental concept and key scientific capabilities of AION (Atom Interferometer Observatory and Network), a proposed UK-based experimental programme using cold strontium atoms to search for ultra-light dark matter, to explore gravitational waves in the mid-frequency range between the peak sensitivities of the LISA and LIGO/Virgo/ KAGRA/INDIGO/Einstein Telescope/Cosmic Explorer experiments, and to probe other frontiers in fundamental physics. AION would complement other planned searches for dark matter, as well as probe mergers involving intermediate mass black holes and explore early universe cosmology. AION would share many technical features with the MAGIS experimental programme in the US, and synergies would flow from operating AION in a network with this experiment, as well as with other atom interferometer experiments such as MIGA, ZAIGA and ELGAR. Operating AION in a network with other gravitational wave detectors such as LIGO, Virgo and LISA would also offer many synergies.

Characterisation of magnetic field fluctuations at different locations within the Laboratoire Souterrain à Bas Bruit using a new SQUID magnetometer prototype

Authors:

SA Henry, V Andrieux, M Auguste, D Boyer, A Cavaillou, C Clarke, P Febvre, S Gaffet, H Kraus, A Lynch, V Mikhailik, M McCann, E Pozzo di Borgo, C Sudre, G Waysand

Abstract:

We have carried out a series of magnetic field measurements using a portable three-axis SQUID magnetometer at the Laboratoire Souterrain à Bas Bruit (LSBB), Rustrel, France. The magnetometer was originally developed as part of the cryoEDM neutron electric dipole moment experiment [1], where we need to monitor drifts in the magnetic field at a level of ∼0.1 pT. The cryoEDM SQUID system is a 12-channel magnetometer designed to operate in a large cryostat with extensive magnetic shielding [3]. We have tested smaller prototype systems during a series of trips to LSBB [2], primarily to test the SQUIDs, and control and DAQ electronics in a low noise environment. However this investigation also provided an opportunity to characterise the magnetic environment at different locations within the LSBB complex. We monitored the magnetic field at various positions inside the underground laboratory, including the Capsule, the Galerie Anti-Souffe (GAS) and the Galerie Gaz-Brûlés (GGB). We recorded several hours of data at each location to compare with that recorded at the same time by the LSBB [SQUID]2 system permanently installed in the Capsule, and from this we have characterised the relative amplitudes of magnetic field fluctuations in the different locations. SQUID resets are corrected using software, but as this process is not perfect an accurate comparison can only be done during stable periods. Software development and data analysis are still in progress. Preliminary analysis suggests the magnetic field measured in the Capsule is approximately 75% that measured in the GAS and GGB.

Combined CDF and D0 Upper Limits on Standard Model Higgs Boson Production with up to 8.2 fb$^-1$ of Data

Authors:

T Aaltonen, others

CryoEDM: A cryogenic experiment to measure the neutron electric dipole moment

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment 611:2-3 129-132

Abstract:

CryoEDM is an experiment that aims to measure the electric dipole moment (EDM) of the neutron to a precision of 10^−28 e cm. A description of CryoEDM, the apparatus, technologies and commissioning is presented.

CryoEDM: a cryogenic experiment to measure the neutron Electric Dipole Moment

Journal of Physics: Conference Series 251:1 012055

Authors:

CA Baker, SN Balashov, V Francis, K Green, MGD van der Grinten, PS Iaydjiev, SN Ivanov, A Khazov, MAH Tucker, DL Wark, A Davidson, JR Grozier, M Hardiman, PG Harris, JR Karamath, K Katsika, JM Pendlebury, SJM Peeters, DB Shiers, PN Smith, CM Townsley, I Wardell, C Clarke, SA Henry, H Kraus, M McCann, P Geltenbort, H Yoshiki

Abstract:

We have constructed an instrument, CryoEDM, to measure the neutron electric dipole moment to a precision of 10−28 e cm at the Institut Laue-Langevin. The main characteristic is that it is operating entirely in a cryogenic environment, at temperatures of 0.7 K within superfluid helium. Ultracold neutrons are produced in a superthermal source and stored within the superfluid in a storage cell which is held in a magnetic and electric field. NMR measurements are carried out to look for any shifts in the neutron Larmor precession frequency associated with the electric field and the neutrons are detected in-situ in the superfluid. Low temperature SQUID magnetometry is used to monitor the magnetic field. We report on the current status of the project that is now being commissioned and give an outlook on the future exploitation of the instrument.