Constraining stochastic parametrisation schemes using high-resolution simulations
Quarterly Journal of the Royal Meteorological Society Wiley (2019)
The Impact of a Stochastic Parameterization Scheme on Climate Sensitivity in EC-Earth
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 124:23 (2019) 12726-12740
Abstract:
©2019. The Authors. Stochastic schemes, designed to represent unresolved subgrid-scale variability, are frequently used in short and medium-range weather forecasts, where they are found to improve several aspects of the model. In recent years, the impact of stochastic physics has also been found to be beneficial for the model's long-term climate. In this paper, we demonstrate for the first time that the inclusion of a stochastic physics scheme can notably affect a model's projection of global warming, as well as its historical climatological global temperature. Specifically, we find that when including the “stochastically perturbed parametrization tendencies” (SPPT) scheme in the fully coupled climate model EC-Earth v3.1, the predicted level of global warming between 1850 and 2100 is reduced by 10% under an RCP8.5 forcing scenario. We link this reduction in climate sensitivity to a change in the cloud feedbacks with SPPT. In particular, the scheme appears to reduce the positive low cloud cover feedback and increase the negative cloud optical feedback. A key role is played by a robust, rapid increase in cloud liquid water with SPPT, which we speculate is due to the scheme's nonlinear interaction with condensation.The impact of a stochastic parameterization scheme on climate sensitivity in EC‐Earth
Journal of Geophysical Research: Atmospheres American Geophysical Union 124:23 (2019) 12726-12740
Abstract:
Stochastic schemes, designed to represent unresolved sub-grid scale variability, are frequently used in short and medium-range weather forecasts, where they are found to improve several aspects of the model. In recent years, the impact of stochastic physics has also been found to be beneficial for the model's long term climate. In this paper, we demonstrate for the first time that the inclusion of a stochastic physics scheme can notably affect a model's projection of global warming, as well as its historical climatological global temperature. Specifically, we find that when including the 'stochastically perturbed parametrisation tendencies' scheme (SPPT) in the fully coupled climate model EC-Earth v3.1, the predicted level of global warming between 1850 and 2100 is reduced by 10% under an RCP8.5 forcing scenario. We link this reduction in climate sensitivity to a change in the cloud feedbacks with SPPT. In particular, the scheme appears to reduce the positive low cloud cover feedback, and increase the negative cloud optical feedback. A key role is played by a robust, rapid increase in cloud liquid water with SPPT, which we speculate is due to the scheme's non-linear interaction with condensation.Machine learning and artificial intelligence to aid climate change research and preparedness
Environmental Research Letters IOP Publishing 14 (2019) 12
Does ENSO regularity increase in a warming climate?
Journal of Climate American Meteorological Society (2019) JCLI-D-19-0545.1