Reconstruction of last millennium sea surface temperature on 1° grid using a random forest algorithm

Global and Planetary Change 258 (2026) 105279

Authors:

Simon LL Michel, Didier Swingedouw, Juliette Mignot

Abstract:

Climate models and theoretical evidence show that the ocean drives climate from sub-decadal to centennial timescales through a variety of processes and their interactions. The range of direct climate observations, however, is too short to understand the exact role of the ocean in shaping observed and future climate variability on top of anthropogenic climate change. In the present study, we use a large set of paleoclimate records combined with a random forest algorithm to reconstruct a gridded dataset of sea surface temperatures since 850 C.E. to provide a better framework for the study of ocean surface variability. In line with modeling and paleodata studies, our reconstruction suggests that natural climate forcings have importantly influenced the last millennium climate variability. Our reconstruction also suggests that North Atlantic SST multidecadal variability influences Pacific SST on decadal timescales. However, the latter result is shown to be strongly dependent on background climate conditions. This new reconstruction offers a useful resource for testing the capabilities of climate models to reproduce the linkages between Atlantic and Pacific as well as the response to external forcings.

New insights into decadal climate variability in the North Atlantic revealed by data-driven dynamical models

Earth System Dynamics (2025)

Authors:

Andrew J. Nicoll, Hannah M. Christensen, Chris Huntingford, and Doug Smith

Abstract:

The Atlantic Multidecadal Variability (AMV) and the North Atlantic Oscillation (NAO) are the dominant modes of oceanic and atmospheric variability in the North Atlantic, respectively, and are key sources of predictability from seasonal to decadal timescales. However, the physical processes and feedback mechanisms linking the AMV and NAO, and the role of diabatic processes in these feedbacks, remain debated. We present a data-driven dynamical modelling framework which captures coupled decadal variability in AMV, NAO, and North Atlantic precipitation. Applying equation discovery methods to observational data, we identify low-order models consisting of three coupled ordinary differential equations. These models reproduce observed decadal variability and show robust out-of-sample predictive skill on multi-annual to decadal lead times. The resulting model dynamics include a distinct quasi-periodic 20-year oscillation consistent with a damped oceanic mode of variability. Notably, precipitation-related terms feature prominently in the low-order models, suggesting an important role for latent heat release and freshwater fluxes in mediating ocean–atmosphere interactions. We propose new feedback mechanisms between North Atlantic sea surface temperature and the NAO, with precipitation acting as a dynamical bridge. Overall, these results illustrate how equation discovery can provide mechanistic hypotheses and new insight beyond conventional analyses of observations and climate model simulations.

Image calibration between the Extreme Ultraviolet Imagers on Solar Orbiter and the Solar Dynamics Observatory

Astronomy and Astrophysics 703 (2025)

Authors:

C Schirninger, R Jarolim, AM Veronig, A Jungbluth, L Freischem, JE Johnson, V Delouille, L Dolla, A Spalding

Abstract:

To study and monitor the Sun and its atmosphere, various space missions have been launched in the past decades. With rapid improvement in technology and different mission requirements, the data products are subject to constant change. However, for such long-term studies as solar variability or multi-instrument investigations, uniform data series are required. In this study, we built on and expanded the instrument-to-instrument translation (ITI) framework, which provides unpaired image translations. We applied the tool to data from the Extreme Ultraviolet Imager (EUI), specifically the Full Sun Imager (FSI) on Solar Orbiter and the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). This approach allowed us to create a homogeneous dataset that combines the two extreme ultraviolet (EUV) imagers in the 174/171 Å and 304 Å channels. We demonstrate that ITI is able to provide image calibration between Solar Orbiter and SDO EUV imagers, independent of the varying orbital position of Solar Orbiter. The comparison of the intercalibrated light curves derived from 174/171 Å and 304 Å filtergrams from EUI and AIA shows that ITI can provide uniform data series that outperform a standard baseline calibration. We evaluate the perceptual similarity in terms of the Fréchet inception distance, which demonstrates that ITI achieves a significant improvement of perceptual similarity between EUI and AIA. The study provides intercalibrated observations from Solar Orbiter/EUI/FSI with SDO/AIA, enabling a homogeneous dataset suitable for solar cycle studies and multi-viewpoint investigations.

nextGEMS: entering the era of kilometer-scale Earth system modeling

Geoscientific Model Development Copernicus Publications 18:20 (2025) 7735-7761

Authors:

Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal

Abstract:

Abstract. The Next Generation of Earth Modeling Systems (nextGEMS) project aimed to produce multidecadal climate simulations, for the first time, with resolved kilometer-scale (km-scale) processes in the ocean, land, and atmosphere. In only 3 years, nextGEMS achieved this milestone with the two km-scale Earth system models, ICOsahedral Non-hydrostatic model (ICON) and Integrated Forecasting System coupled to the Finite-volumE Sea ice-Ocean Model (IFS-FESOM). nextGEMS was based on three cornerstones: (1) developing km-scale Earth system models with small errors in the energy and water balance, (2) performing km-scale climate simulations with a throughput greater than 1 simulated year per day, and (3) facilitating new workflows for an efficient analysis of the large simulations with common data structures and output variables. These cornerstones shaped the timeline of nextGEMS, divided into four cycles. Each cycle marked the release of a new configuration of ICON and IFS-FESOM, which were evaluated at hackathons. The hackathon participants included experts from climate science, software engineering, and high-performance computing as well as users from the energy and agricultural sectors. The continuous efforts over the four cycles allowed us to produce 30-year simulations with ICON and IFS-FESOM, spanning the period 2020–2049 under the SSP3-7.0 scenario. The throughput was about 500 simulated days per day on the Levante supercomputer of the German Climate Computing Center (DKRZ). The simulations employed a horizontal grid of about 5 km resolution in the ocean and 10 km resolution in the atmosphere and land. Aside from this technical achievement, the simulations allowed us to gain new insights into the realism of ICON and IFS-FESOM. Beyond its time frame, nextGEMS builds the foundation of the Climate Change Adaptation Digital Twin developed in the Destination Earth initiative and paves the way for future European research on climate change.

Balancing Informativity and Predictability in Circulation Type Forecasts: A Case Study of Energy Demand in Great Britain

Meteorological Applications Wiley 32:4 (2025) e70078

Authors:

Kristian Strommen, Hannah M Christensen, Hannah C Bloomfield

Abstract:

Weather regimes and weather patterns, here jointly referred to as circulation types, are used to generate forecasts for a variety of applications, such as energy demand and flood risk. However, there are usually many different choices available for precisely which circulation types to use. Ideally, one would like to use circulation types that are both highly informative for the application and also highly predictable, but in practice, there is often a tradeoff between informativity and predictability. We present a simple, general framework for how to construct a circulation type forecast that optimally balances these factors by segueing between different choices of circulation types at different lead times based on information‐theoretic considerations. As an example, we apply this framework to the case of forecasting energy demand in Great British winters. We compare a set of 30 weather patterns produced by the UK Met Office with the much simpler two‐state framework consisting of a positive and negative North Atlantic Oscillation (NAO) regime and show how to optimally combine the two across a winter season.