Bondi or not Bondi: The impact of resolution on accretion and drag force modelling for Supermassive Black Holes

Monthly Notices of the Royal Astronomical Society Oxford University Press 478:1 (2018) 995-1016

Authors:

RS Beckmann, Julian EG Devriendt, Adrianne Slyz

Abstract:

Whilst in galaxy-size simulations, supermassive black holes (SMBH) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion onto a point mass, and the related estimate of the drag force exerted onto a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply limited accretion (SLA) scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above $\mathcal{M}_\infty \geq 3$, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates onto the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.

Universality of the halo mass function in screened gravity theories

(2018)

Authors:

Francesca von Braun-Bates, Julien Devriendt

KiDS-i-800: Comparing weak gravitational lensing measurements from same-sky surveys

Monthly Notices of the Royal Astronomical Society Oxford University Press 477:4 (2018) 4285-4307

Authors:

A Amon, C Heymans, D Klaes, T Erben, C Blake, H Hildebrandt, H Hoekstra, K Kuijken, Lance Miller, CB Morrison, A Choi, JTA De Jong, K Glazebrook, N Irisarri, B Joachimi, Shahab Joudaki, A Kannawadi, C Lidman, N Napolitano, D Parkinson, P Schneider, E Van Uitert, M Viola, C Wolf

Abstract:

We present a weak gravitational lensing analysis of 815 deg2of i-band imaging from the Kilo-Degree Survey (KiDS-i-800). In contrast to the deep r-band observations, which take priority during excellent seeing conditions and form the primary KiDS data set (KiDS-r-450), the complementary yet shallower KiDS-i-800 spans a wide range of observing conditions. The overlapping KiDS-i-800 and KiDS-r-450 imaging therefore provides a unique opportunity to assess the robustness of weak lensing measurements. In our analysis we introduce two new 'null' tests. The 'nulled' two-point shear correlation function uses a matched catalogue to show that the calibrated KiDS-i-800 and KiDS-r-450 shear measurements agree at the level of 1 ± 4 per cent.We use five galaxy lens samples to determine a 'nulled' galaxy-galaxy lensing signal from the full KiDS-i-800 and KiDS-r-450 surveys and find that the measurements agree to 7 ± 5 per cent when the KiDS-i-800 source redshift distribution is calibrated using either spectroscopic redshifts, or the 30-band photometric redshifts from the COSMOS survey.

The environment and host haloes of the brightest z~6 Lyman-break galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 477:3 (2018) 3760-3774

Authors:

Peter Hatfield, Rebecca Bowler, Matthew Jarvis, Catherine Hale

Abstract:

By studying the large-scale structure of the bright high-redshift Lyman-break galaxy (LBG) population it is possible to gain an insight into the role of environment in galaxy formation physics in the early Universe. We measure the clustering of a sample of bright ($-22.7

Imprints of the large-scale structure on AGN formation and evolution

A&A 2018

Authors:

Natalia Porqueres, Jens Jasche, Torsten A. Enßlin, Guilhem Lavaux

Abstract:

Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into LINERs (Low-Ionization Nuclear Emission Line Regions), the weaker counterpart of Seyferts. We conclud that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.