Imprints of the large-scale structure on AGN formation and evolution

A&A 2018

Authors:

Natalia Porqueres, Jens Jasche, Torsten A. Enßlin, Guilhem Lavaux

Abstract:

Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into LINERs (Low-Ionization Nuclear Emission Line Regions), the weaker counterpart of Seyferts. We conclud that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.

Neutrino masses and beyond-$\Lambda$CDM cosmology with LSST and future CMB experiments

(2018)

Authors:

Siddharth Mishra-Sharma, David Alonso, Joanna Dunkley

The Effects of Bandpass Variations on Foreground Removal Forecasts for Future CMB Experiments

(2018)

Authors:

JT Ward, D Alonso, J Errard, MJ Devlin, M Hasselfield

KiDS plus GAMA: Cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, and angular clustering

Monthly Notices of the Royal Astronomical Society Oxford University Press 476:4 (2018) 4662-4689

Authors:

E Van Uitert, B Joachimi, Shahab Joudaki, A Amon, C Heymans, F Koehlinger, M Asgari, C Blake, A Choi, T Erben, DJ Farrow, J Harnois-Deraps, H Hildebrandt, H Hoekstra, TD Kitching, D Klaes, K Kuijken, Julian Merten, Lance Miller, R Nakajima, P Schneider, E Valentijn, M Viola

Abstract:

We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in~450 deg2of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain S8≡ σ8√ Ωm/0.3 = 0.800-0.027+0.029, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalizing over wide priors on the mean of the tomographic redshift distributions yields consistent results for S8with an increase of 28 per cent in the error. The combination of probes results in a 26 per cent reduction in uncertainties of S8over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of 2 better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination.

Measurement of the thermal Sunyaev-Zel'dovich effect around cosmic voids

Physical Review D American Physical Society 97:6 (2018) 063514

Authors:

David Alonso, JC Hill, R Hložek, DN Spergel

Abstract:

We stack maps of the thermal Sunyaev-Zel’dovich effect produced by the Planck Collaboration around the centers of cosmic voids defined by the distribution of galaxies in the CMASS sample of the Baryon Oscillation Spectroscopic Survey, scaled by the void effective radii. We report a first detection of the associated cross-correlation at the 3.4σ level: voids are under-pressured relative to the cosmic mean. We compare the measured Compton-y profile around voids with a model based solely on the spatial modulation of halo abundance with environmental density. The amplitude of the detected signal is marginally lower than predicted by an overall amplitude αv = 0.67 ± 0.2. We discuss the possible interpretations of this measurement in terms of modelling uncertainties, excess pressure in low-mass halos, or non-local heating mechanisms.