The Highest-redshift Balmer Breaks as a Test of ΛCDM

The Astrophysical Journal American Astronomical Society 967:2 (2024) 172

Authors:

Charles L Steinhardt, Albert Sneppen, Thorbjørn Clausen, Harley Katz, Martin P Rey, Jonas Stahlschmidt

Abstract:

Recent studies have reported tension between the presence of luminous, high-redshift galaxies and the halo mass functions predicted by standard cosmology. Here, an improved test is proposed using the presence of high-redshift Balmer breaks to probe the formation of early 104–105 M ⊙ baryonic minihalos. Unlike previous tests, this does not depend upon the mass-to-light ratio and has only a slight dependence upon the metallicity, stellar initial mass function, and star formation history, which are all weakly constrained at high redshift. We show that the strongest Balmer breaks allowed at z = 9 using the simplest ΛCDM cosmological model would allow a D 4000 as high as 1.26 under idealized circumstances and D 4000 ≤ 1.14 including realistic feedback models. Since current photometric template fitting to JWST sources infers the existence of stronger Balmer breaks out to z ≳ 11, upcoming spectroscopic follow-up will either demonstrate those templates are invalid at high redshift or imply new physics beyond “vanilla” ΛCDM.

EDGE: A new model for Nuclear Star Cluster formation in dwarf galaxies

ArXiv 2405.19286 (2024)

Authors:

Emily I Gray, Justin I Read, Ethan Taylor, Matthew DA Orkney, Martin P Rey, Robert M Yates, Stacy Y Kim, Noelia ED Noël, Oscar Agertz, Eric Andersson, Andrew Pontzen

Inferring the Ionizing Photon Contributions of High-Redshift Galaxies to Reionization with JWST NIRCam Photometry

(2024)

Authors:

Nicholas Choustikov, Richard Stiskalek, Aayush Saxena, Harley Katz, Julien Devriendt, Adrianne Slyz

Constraints on dark matter and astrophysics from tomographic γ-ray cross-correlations

Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society 109 (2024) 103517

Authors:

Anya Paopiamsap, David Alonso, Deaglan Bartlett, Maciej Bilicki

Abstract:

We study the cross-correlation between maps of the unresolved 𝛾-ray background constructed from the 12-year data release of the Fermi Large-Area Telescope, and the overdensity of galaxies in the redshift range 𝑧≲0.4 as measured by the 2MASS photometric redshift survey and the WISE-SuperCOSMOS photometric survey. A signal is detected at the 8−10⁢𝜎 level, which we interpret in terms of both astrophysical 𝛾-ray sources, and weakly interacting massive particles (WIMP) dark matter decay and annihilation. The sensitivity achieved allows us to characterise the energy and redshift dependence of the signal, and we show that the latter is incompatible with a pure dark matter origin. We thus use our measurement to place an upper bound on the WIMP decay rate and the annihilation cross section, finding constraints that are competitive with those found in other analyses. Our analysis is based on the extraction of clean model-independent observables that can then be used to constrain arbitrary astrophysical and particle physics models. In this sense we produce measurements of the 𝛾-ray emissivity as a function of redshift and rest-frame energy 𝜖, and of a quantity 𝐹⁡(𝜖) encapsulating all WIMP parameters relevant for dark matter decay or annihilation. We make these measurements, together with a full account of their statistical uncertainties, publicly available.

Constraints on dark matter and astrophysics from tomographic γ -ray cross-correlations

Physical Review D American Physical Society (APS) 109:10 (2024) 103517

Authors:

Anya Paopiamsap, David Alonso, Deaglan J Bartlett, Maciej Bilicki

Abstract:

We study the cross-correlation between maps of the unresolved γ-ray background constructed from the 12-year data release of the Large-Area Telescope, and the overdensity of galaxies in the redshift range z0.4 as measured by the 2MASS photometric redshift survey and the WISE-SuperCOSMOS photometric survey. A signal is detected at the 810σ level, which we interpret in terms of both astrophysical γ-ray sources, and weakly interacting massive particles (WIMP) dark matter decay and annihilation. The sensitivity achieved allows us to characterise the energy and redshift dependence of the signal, and we show that the latter is incompatible with a pure dark matter origin. We thus use our measurement to place an upper bound on the WIMP decay rate and the annihilation cross section, finding constraints that are competitive with those found in other analyses. Our analysis is based on the extraction of clean model-independent observables that can then be used to constrain arbitrary astrophysical and particle physics models. In this sense we produce measurements of the γ-ray emissivity as a function of redshift and rest-frame energy ϵ, and of a quantity F(ϵ) encapsulating all WIMP parameters relevant for dark matter decay or annihilation. We make these measurements, together with a full account of their statistical uncertainties, publicly available. Published by the American Physical Society 2024