The Velocity Field Olympics: Assessing velocity field reconstructions with direct distance tracers

(2025)

Authors:

Richard Stiskalek, Harry Desmond, Julien Devriendt, Adrianne Slyz, Guilhem Lavaux, Michael J Hudson, Deaglan J Bartlett, Hélène M Courtois

Euclid preparation

Astronomy & Astrophysics EDP Sciences 693 (2025) ARTN A249

Authors:

J Lesgourgues, J Schwagereit, J Bucko, G Parimbelli, Sk Giri, F Hervas-Peters, A Schneider, M Archidiacono, F Pace, Z Sakr, A Amara, L Amendola, S Andreon, N Auricchio, H Aussel, M Baldi, S Bardelli, R Bender, C Bodendorf, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, C Carbone, Vf Cardone, J Carretero, S Casas, M Castellano, S Cavuoti, A Cimatti, G Congedo, Cj Conselice, L Conversi, Y Copin, F Courbin, Hm Courtois, A Da Silva, H Degaudenzi, Am Di Giorgio, M Douspis, F Dubath, X Dupac, S Dusini, M Farina, S Farrens, S Ferriol, P Fosalba, M Frailis

Abstract:

The Euclid mission of the European Space Agency will provide weak gravitational lensing and galaxy clustering surveys that can be used to constrain the standard cosmological model and its extensions, with an opportunity to test the properties of dark matter beyond the minimal cold dark matter paradigm. We present forecasts from the combination of the Euclid weak lensing and photometric galaxy clustering data on the parameters describing four interesting and representative non-minimal dark matter models: a mixture of cold and warm dark matter relics; unstable dark matter decaying either into massless or massive relics; and dark matter undergoing feeble interactions with relativistic relics. We modelled these scenarios at the level of the non-linear matter power spectrum using emulators trained on dedicated N-body simulations. We used a mock Euclid likelihood and Monte Carlo Markov chains to fit mock data and infer error bars on dark matter parameters marginalised over other parameters. We find that the Euclid photometric probe (alone or in combination with cosmic microwave background data from the Planck satellite) will be sensitive to the effect of each of the four dark matter models considered here. The improvement will be particularly spectacular for decaying and interacting dark matter models. With Euclid, the bounds on some dark matter parameters can improve by up to two orders of magnitude compared to current limits. We discuss the dependence of predicted uncertainties on different assumptions: the inclusion of photometric galaxy clustering data, the minimum angular scale taken into account, and modelling of baryonic feedback effects. We conclude that the Euclid mission will be able to measure quantities related to the dark sector of particle physics with unprecedented sensitivity. This will provide important information for model building in high-energy physics. Any hint of a deviation from the minimal cold dark matter paradigm would have profound implications for cosmology and particle physics.

GRTresna: An open-source code to solve the initial data constraints in numerical relativity

ArXiv 2501.13046 (2025)

Authors:

Josu C Aurrekoetxea, Sam E Brady, Llibert Aresté-Saló, Jamie Bamber, Liina Chung-Jukko, Katy Clough, Eloy de Jong, Matthew Elley, Pau Figueras, Thomas Helfer, Eugene A Lim, Miren Radia, Areef Waeming, Zipeng Wang

Inferring the ionizing photon contributions of high-redshift galaxies to reionization with JWST NIRCam photometry

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf126

Authors:

Nicholas Choustikov, Richard Stiskalek, Aayush Saxena, Harley Katz, Julien Devriendt, Adrianne Slyz

The Prevalence of Star-forming Clumps as a Function of Environmental Overdensity in Local Galaxies

The Astrophysical Journal American Astronomical Society 979:2 (2025) 118

Authors:

Dominic Adams, Hugh Dickinson, Lucy Fortson, Kameswara Mantha, Vihang Mehta, Jürgen Popp, Claudia Scarlata, Chris Lintott, Brooke Simmons, Mike Walmsley

Abstract:

At the peak of cosmic star formation (1 ≲ z ≲ 2), the majority of star-forming galaxies hosted compact, star-forming clumps, which were responsible for a large fraction of cosmic star formation. By comparison, ≲5% of local star-forming galaxies host comparable clumps. In this work, we investigate the link between the environmental conditions surrounding local (z < 0.04) galaxies and the prevalence of clumps in these galaxies. To obtain our clump sample, we use a Faster R-CNN object detection network trained on the catalog of clump labels provided by the Galaxy Zoo: Clump Scout project, then apply this network to detect clumps in approximately 240,000 Sloan Digital Sky Survey galaxies (originally selected for Galaxy Zoo 2). The resulting sample of 41,445 u-band bright clumps in 34,246 galaxies is the largest sample of clumps yet assembled. We then select a volume-limited sample of 9964 galaxies and estimate the density of their local environment using the distance to their projected fifth nearest neighbor. We find a robust correlation between environment and the clumpy fraction (f clumpy) for star-forming galaxies (specific star formation rate, sSFR > 10−2 Gyr−1) but find little to no relationship when controlling for galaxies’ sSFR or color. Further, f clumpy increases significantly with sSFR in local galaxies, particularly above sSFR > 10−1 Gyr−1. We posit that a galaxy’s gas fraction primarily controls the formation and lifetime of its clumps, and that environmental interactions play a smaller role.