Robust cosmic shear with small-scale nulling

(2025)

Authors:

Giulia Piccirilli, Matteo Zennaro, Carlos García-García, David Alonso

Cosmological constraints using Minkowski functionals from the first year data of the Hyper Suprime-Cam

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 537:4 (2025) 3553-3560

Authors:

Joaquin Armijo, Gabriela A Marques, Camila P Novaes, Leander Thiele, Jessica A Cowell, Daniela Grandón, Masato Shirasaki, Jia Liu

Euclid preparation

Astronomy & Astrophysics EDP Sciences 694 (2025) ARTN A141

Authors:

N Tessore, B Joachimi, A Loureiro, A Hall, G Cañas-Herrera, I Tutusaus, N Jeffrey, K Naidoo, Jd McEwen, A Amara, S Andreon, N Auricchio, C Baccigalupi, M Baldi, S Bardelli, F Bernardeau, D Bonino, E Branchini, M Brescia, J Brinchmann, A Caillat, S Camera, V Capobianco, C Carbone, Vf Cardone, J Carretero, S Casas, M Castellano, G Castignani, S Cavuoti, A Cimatti, C Colodro-Conde, G Congedo, Cj Conselice, L Conversi, Y Copin, F Courbin, Hm Courtois, M Cropper, A Da Silva, H Degaudenzi, G De Lucia, J Dinis, F Dubath, Caj Duncan, X Dupac, S Dusini, M Farina, S Farrens, F Faustini

Abstract:

In this paper we present the framework for measuring angular power spectra in the Euclid mission. The observables in galaxy surveys, such as galaxy clustering and cosmic shear, are not continuous fields, but discrete sets of data, obtained only at the positions of galaxies. We show how to compute the angular power spectra of such discrete data sets, without treating observations as maps of an underlying continuous field that is overlaid with a noise component. This formalism allows us to compute the exact theoretical expectations for our measured spectra, under a number of assumptions that we track explicitly. In particular, we obtain exact expressions for the additive biases ('shot noise') in angular galaxy clustering and cosmic shear. For efficient practical computations, we introduce a spin-weighted spherical convolution with a well-defined convolution theorem, which allows us to apply exact theoretical predictions to finite-resolution maps, including HEALPix. When validating our methodology, we find that our measurements are biased by less than 1% of their statistical uncertainty in simulations of Euclid's first data release.

Matching current observational constraints with nonminimally coupled dark energy

Physical Review D American Physical Society (APS) 111:4 (2025) ARTN L041303

Authors:

William J Wolf, Pedro G Ferreira, Carlos García-García

Abstract:

We show that a Universe with a nonminimally coupled scalar field can fit current measurements of the expansion rate of the Universe better than the standard Λ-cold dark matter model or other minimally coupled dark energy models. In particular, the nonminimal coupling in this model allows for the dark energy model to exhibit stable phantom crossing behavior, which seems to be suggested by the constraints on the dark energy equation of state coming from the most recent data. While we find a clear improvement in the goodness of fit for this dark energy model with respect to others that have been considered in the recent literature, using information theoretic criteria, we show that the evidence for it is still inconclusive.

Structural decomposition of merger-free galaxies hosting luminous AGNs

Monthly Notices of the Royal Astronomical Society Oxford University Press 537:4 (2025) 3511-3524

Authors:

Matthew J Fahey, Izzy L Garland, Brooke D Simmons, William C Keel, Jesse Shanahan, Alison Coil, Eilat Glikman, Chris J Lintott, Karen L Masters, Ed Moran, Rebecca J Smethurst, Tobias Géron, Matthew R Thorne

Abstract:

Active galactic nucleus (AGN) growth in disc-dominated, merger-free galaxies is poorly understood, largely due to the difficulty in disentangling the AGN emission from that of the host galaxy. By carefully separating this emission, we examine the differences between AGNs in galaxies hosting a (possibly) merger-grown, classical bulge, and AGNs in secularly grown, truly bulgeless disc galaxies. We use galfit to obtain robust, accurate morphologies of 100 disc-dominated galaxies imaged with the Hubble Space Telescope. Adopting an inclusive definition of classical bulges, we detect a classical bulge component in per cent of the galaxies. These bulges were not visible in Sloan Digital Sky Survey photometry, however these galaxies are still unambiguously disc-dominated, with an average bulge-to-total luminosity ratio of . We find some correlation between bulge mass and black hole mass for disc-dominated galaxies, though this correlation is significantly weaker in comparison to the relation for bulge-dominated or elliptical galaxies. Furthermore, a significant fraction ( per cent) of our black holes are overly massive when compared to the relationship for elliptical galaxies. We find a weak correlation between total stellar mass and black hole mass for the disc-dominated galaxies, hinting that the stochasticity of black hole–galaxy co-evolution may be higher in disc-dominated than bulge-dominated systems.