Cosmic evolution of black hole spin and galaxy orientations: clues from the NewHorizon and Galactica simulations
Abstract:
Black holes (BHs) are ubiquitous components of the center of most galaxies. In addition to their mass, the BH spin, through its amplitude and orientation, is a key factor in the galaxy formation process, as it controls the radiative efficiency of the accretion disk and relativistic jets. Using the recent cosmological high-resolution zoom-in simulations, NewHorizon and Galactica, in which the evolution of the BH spin is followed on the fly, we have tracked the cosmic history of a hundred BHs with a mass greater than 2×104M⊙. For each of them, we have studied the variations of the three-dimensional angle (Ψ) subtended between the BH spins and the angular momentum vectors of their host galaxies (estimated from the stellar component). The analysis of the individual evolution of the most massive BHs suggests that they are generally passing by three different regimes. First, for a short period after their birth, low-mass BHs (MBH <3×104M⊙) are rapidly spun up by gas accretion and their spin tends to be aligned with their host galaxy spin. Then follows a second phase in which the accretion of gas onto low-mass BHs (MBH ≲105M⊙) is quite chaotic and inefficient, reflecting the complex and disturbed morphologies of forming proto-galaxies at high redshifts. The variations of Ψ are rather erratic during this phase and are mainly driven by the rapid changes of the direction of the galaxy angular momentum. Then, in a third and long phase, BHs are generally well settled in the center of galaxies around which the gas accretion becomes much more coherent (MBH >105 M⊙). In this case, the BH spins tend to be well aligned with the angular momentum of their host galaxy and this configuration is generally stable even though BH merger episodes can temporally induce misalignment. We even find a few cases of BH-galaxy spin anti-alignment that lasts for a long time in which the gas component is counter-rotating with respect to the stellar component. We have also derived the distributions of cos(Ψ) at different redshifts and found that BHs and galaxy spins are generally aligned. Our analysis suggests that the fraction of BH-galaxy pairs with low Ψ values reaches maximum at z∼4-3, and then decreases until z∼1.5 due to the high BH-merger rate. Afterward, it remains almost constant probably due to the fact that BH mergers becomes rare, except for a slight increase at late times. Finally, based on a Monte Carlo method, we also predict statistics for the 2-d projected spin-orbit angles λ. In particular, the distribution of λ traces the alignment tendency well in the three-dimensional analysis. Such predictions provide an interesting background for future observational analyses.
On the Origin of the Variety of Velocity Dispersion Profiles of Galaxies
Abstract:
Observed and simulated galaxies exhibit a significant variation in their velocity dispersion profiles. We examine the inner and outer slopes of stellar velocity dispersion profiles using integral field spectroscopy data from two surveys, SAMI (for z < 0.115) and CALIFA (for z < 0.03), comparing them with results from two cosmological hydrodynamic simulations: Horizon-AGN (for z = 0.017) and NewHorizon (for z ≲ 1). The simulated galaxies closely reproduce the variety of velocity dispersion slopes and stellar mass dependence of both inner and outer radii (0.5 r 50 and 3 r 50) as observed, where r 50 stands for half-light radius. The inner slopes are mainly influenced by the relative radial distribution of the young and old stars formed in situ: a younger center shows a flatter inner profile. The presence of accreted (ex situ) stars has two effects on the velocity dispersion profiles. First, because they are more dispersed in spatial and velocity distributions compared to in situ formed stars, it increases the outer slope of the velocity dispersion profile. It also causes the velocity anisotropy to be more radial. More massive galaxies have a higher fraction of stars formed ex situ and hence show a higher slope in outer velocity dispersion profile and a higher degree of radial anisotropy. The diversity in the outer velocity dispersion profiles reflects the diverse assembly histories among galaxies.A precise symbolic emulator of the linear matter power spectrum
Abstract:
Context. Computing the matter power spectrum, P(k), as a function of cosmological parameters can be prohibitively slow in cosmological analyses, hence emulating this calculation is desirable. Previous analytic approximations are insufficiently accurate for modern applications, so black-box, uninterpretable emulators are often used.
Aims. We aim to construct an efficient, differentiable, interpretable, symbolic emulator for the redshift zero linear matter power spectrum which achieves sub-percent level accuracy. We also wish to obtain a simple analytic expression to convert As to σ8 given the other cosmological parameters.
Methods. We utilise an efficient genetic programming based symbolic regression framework to explore the space of potential mathematical expressions which can approximate the power spectrum and σ8. We learn the ratio between an existing low-accuracy fitting function for P(k) and that obtained by solving the Boltzmann equations and thus still incorporate the physics which motivated this earlier approximation.
Results. We obtain an analytic approximation to the linear power spectrum with a root mean squared fractional error of 0.2% between k = 9 × 10−3 − 9 h Mpc−1 and across a wide range of cosmological parameters, and we provide physical interpretations for various terms in the expression. Our analytic approximation is 950 times faster to evaluate than CAMB and 36 times faster than the neural network based matter power spectrum emulator BACCO. We also provide a simple analytic approximation for σ8 with a similar accuracy, with a root mean squared fractional error of just 0.1% when evaluated across the same range of cosmologies. This function is easily invertible to obtain As as a function of σ8 and the other cosmological parameters, if preferred.
Conclusions. It is possible to obtain symbolic approximations to a seemingly complex function at a precision required for current and future cosmological analyses without resorting to deep-learning techniques, thus avoiding their black-box nature and large number of parameters. Our emulator will be usable long after the codes on which numerical approximations are built become outdated.