PRISM (Polarized Radiation Imaging and Spectroscopy Mission): A White Paper on the Ultimate Polarimetric Spectro-Imaging of the Microwave and Far-Infrared Sky

ArXiv 1306.2259 (2013)

Authors:

PRISM Collaboration, Philippe Andre, Carlo Baccigalupi, Domingos Barbosa, James Bartlett, Nicola Bartolo, Elia Battistelli, Richard Battye, George Bendo, Jean-Philippe Bernard, Marco Bersanelli, Matthieu Bethermin, Pawel Bielewicz, Anna Bonaldi, Francois Bouchet, Francois Boulanger, Jan Brand, Martin Bucher, Carlo Burigana, Zhen-Yi Cai, Viviana Casasola, Guillaume Castex, Anthony Challinor, Jens Chluba, Sergio Colafrancesco, Francesco Cuttaia, Giuseppe D'Alessandro, Richard Davis, Miguel de Avillez, Paolo de Bernardis, Marco de Petris, Adriano de Rosa, Gianfranco de Zotti, Jacques Delabrouille, Clive Dickinson, Jose Maria Diego, Edith Falgarone, Pedro Ferreira, Katia Ferriere, Fabio Finelli, Andrew Fletcher, Gary Fuller, Silvia Galli, Ken Ganga, Juan Garcia-Bellido, Adnan Ghribi, Joaquin Gonzalez-Nuevo, Keith Grainge, Alessandro Gruppuso, Alex Hall, Carlos Hernandez-Monteagudo, Mark Jackson, Andrew Jaffe, Rishi Khatri, Luca Lamagna, Massimiliano Lattanzi, Paddy Leahy, Michele Liguori, Elisabetta Liuzzo, Marcos Lopez-Caniego, Juan Macias-Perez, Bruno Maffei, Davide Maino, Silvia Masi, Anna Mangilli, Marcella Massardi, Sabino Matarrese, Alessandro Melchiorri, Jean-Baptiste Melin, Aniello Mennella, Arturo Mignano, Marc-Antoine Miville-Deschenes, Federico Nati, Paolo Natoli, Mattia Negrello, Fabio Noviello, Francesco Paci, Rosita Paladino, Daniela Paoletti, Francesca Perrotta, Francesco Piacentini, Michel Piat, Lucio Piccirillo, Giampaolo Pisano, Gianluca Polenta, Sara Ricciardi, Matthieu Roman, Jose-Alberto Rubino-Martin, Maria Salatino, Alessandro Schillaci, Paul Shellard, Joseph Silk, Radek Stompor, Rashid Sunyaev, Andrea Tartari, Luca Terenzi, Luigi Toffolatti, Maurizio Tomasi, Tiziana Trombetti, Marco Tucci, Bartjan Van Tent, Licia Verde, Ben Wandelt, Stafford Withington

Abstract:

PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in response to the Call for White Papers for the definition of the L2 and L3 Missions in the ESA Science Programme. PRISM would have two instruments: (1) an imager with a 3.5m mirror (cooled to 4K for high performance in the far-infrared---that is, in the Wien part of the CMB blackbody spectrum), and (2) an Fourier Transform Spectrometer (FTS) somewhat like the COBE FIRAS instrument but over three orders of magnitude more sensitive. Highlights of the new science (beyond the obvious target of B-modes from gravity waves generated during inflation) made possible by these two instruments working in tandem include: (1) the ultimate galaxy cluster survey gathering 10e6 clusters extending to large redshift and measuring their peculiar velocities and temperatures (through the kSZ effect and relativistic corrections to the classic y-distortion spectrum, respectively) (2) a detailed investigation into the nature of the cosmic infrared background (CIB) consisting of at present unresolved dusty high-z galaxies, where most of the star formation in the universe took place, (3) searching for distortions from the perfect CMB blackbody spectrum, which will probe a large number of otherwise inaccessible effects (e.g., energy release through decaying dark matter, the primordial power spectrum on very small scales where measurements today are impossible due to erasure from Silk damping and contamination from non-linear cascading of power from larger length scales). These are but a few of the highlights of the new science that will be made possible with PRISM.

Cosmology on Ultralarge Scales with Intensity Mapping of the Neutral Hydrogen 21 cm Emission: Limits on Primordial Non-Gaussianity

(2013)

Authors:

Stefano Camera, Mario G Santos, Pedro G Ferreira, Luis Ferramacho

Cosmology on Ultralarge Scales with Intensity Mapping of the Neutral Hydrogen 21 cm Emission: Limits on Primordial Non-Gaussianity

ArXiv 1305.6928 (2013)

Authors:

Stefano Camera, Mario G Santos, Pedro G Ferreira, Luis Ferramacho

Abstract:

The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z~1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter f_NL, with an error close to ~1.

Does Dark Energy Really Exist?

Scientific American Springer Nature 22:2s (2013) 58-65

Authors:

Timothy Clifton, Pedro G Ferreira

CFHTLenS tomographic weak lensing: Quantifying accurate redshift distributions

Monthly Notices of the Royal Astronomical Society 431:2 (2013) 1547-1564

Authors:

J Benjamin, L Van waerbeke, C Heymans, M Kilbinger, T Erben, H Hildebrandt, H Hoekstra, TD Kitching, Y Mellier, L Miller, B Rowe, T Schrabback, F Simpson, J Coupon, L Fu, J Harnois-déraps, MJ Hudson, K Kuijken, E Semboloni, S Vafaei, M Velander

Abstract:

The Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) comprises deep multicolour (u*g'r'i'z') photometry spanning 154 deg2, with accurate photometric redshifts and shape measurements. We demonstrate that the redshift probability distribution function summed over galaxies provides an accurate representation of the galaxy redshift distribution accounting for random and catastrophic errors for galaxies with best-fitting photometric redshifts zp < 1.3.We present cosmological constraints using tomographic weak gravitational lensing by large-scale structure. We use two broad redshift bins 0.5 < zp ≤ 0.85 and 0.85 < zp ≤ 1.3 free of intrinsic alignment contamination, and measure the shear correlation function on angular scales in the range ∼1-40 arcmin. We show that the problematic redshift scaling of the shear signal, found in previous Canada-France-Hawaii Telescope Legacy Survey data analyses, does not affect the CFHTLenS data. For a flat Λ cold dark matter model and a fixed matter density Ωm = 0.27, we find the normalization of the matter power spectrum σ8 = 0.771 ± 0.041. When combined with cosmic microwave background data (Wilkinson Microwave Anisotropy Probe 7-year results), baryon acoustic oscillation data (BOSS) and a prior on the Hubble constant from the Hubble Space Telescope distance ladder, we find that CFHTLenS improves the precision of the fully marginalized parameter estimates by an average factor of 1.5-2. Combining our results with the above cosmological probes, we find Ωm = 0.2762 ± 0.0074 and σ8 = 0.802 ± 0.013. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.