Swirling around filaments: are large-scale structure vortices spinning up dark halos?
(2013)
Relativistic scalar fields and the quasi-static approximation in theories of modified gravity
(2013)
Relativistic scalar fields and the quasi-static approximation in theories of modified gravity
ArXiv 1310.3266 (2013)
Abstract:
Relativistic scalar fields are ubiquitous in modified theories of gravity. An important tool in understanding their impact on structure formation, especially in the context of N-body simulations, is the quasi-static approximation in which the time evolution of perturbations in the scalar fields is discarded. We show that this approximation must be used with some care by studying linearly perturbed scalar field cosmologies and quantifying the errors that arise from taking the quasi-static limit. We focus on f(R) and chameleon models and link the accuracy of the quasi-static approximation to the fast/slow-roll behaviour of the background and its proximity to {\Lambda}CDM. Investigating a large range of scales, from super- to sub-horizon, we find that slow-rolling ({\Lambda}CDM-like) backgrounds generically result in good quasi-static behaviour, even on (super-)horizon scales. We also discuss how the approximation might affect studying the non-linear growth of structure in numerical N-body simulations.Galaxy Zoo: Observing Secular Evolution Through Bars
ArXiv 1310.2941 (2013)
Abstract:
In this paper, we use the Galaxy Zoo 2 dataset to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR), and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of $23.6\pm 0.4\%$, of which 1,154 barred galaxies also have bar length measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anti-correlated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and bar length with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution which include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks; a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as due to the complicated effects of classical bulges and central mass concentrations on bar evolution, and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies, but are a critical evolutionary driver of their host galaxies in the local universe ($z<1$).PRISM (Polarized Radiation Imaging and Spectroscopy Mission): An Extended White Paper
(2013)