Jet-regulated cooling catastrophe
ArXiv 1004.1851 (2010)
Abstract:
We present the first implementation of Active Galactic Nuclei (AGN) feedback in the form of momentum driven jets in an Adaptive Mesh Refinement (AMR) cosmological resimulation of a galaxy cluster. The jets are powered by gas accretion onto Super Massive Black Holes (SMBHs) which also grow by mergers. Throughout its formation, the cluster experiences different dynamical states: both a morphologically perturbed epoch at early times and a relaxed state at late times allowing us to study the different modes of BH growth and associated AGN jet feedback. BHs accrete gas efficiently at high redshift (z>2), significantly pre-heating proto-cluster halos. Gas-rich mergers at high redshift also fuel strong, episodic jet activity, which transports gas from the proto-cluster core to its outer regions. At later times, while the cluster relaxes, the supply of cold gas onto the BHs is reduced leading to lower jet activity. Although the cluster is still heated by this activity as sound waves propagate from the core to the virial radius, the jets inefficiently redistribute gas outwards and a small cooling flow develops, along with low-pressure cavities similar to those detected in X-ray observations. Overall, our jet implementation of AGN feedback quenches star formation quite efficiently, reducing the stellar content of the central cluster galaxy by a factor 3 compared to the no AGN case. It also dramatically alters the shape of the gas density profile, bringing it in close agreement with the beta model favoured by observations, producing quite an isothermal galaxy cluster for gigayears in the process. However, it still falls short in matching the lower than Universal baryon fractions which seem to be commonplace in observed galaxy clusters.The linear growth rate of structure in Parametrized Post Friedmannian Universes
(2010)
The linear growth rate of structure in Parametrized Post Friedmannian Universes
ArXiv 1003.4231 (2010)
Abstract:
A possible solution to the dark energy problem is that Einstein's theory of general relativity is modified. A suite of models have been proposed that, in general, are unable to predict the correct amount of large scale structure in the distribution of galaxies or anisotropies in the Cosmic Microwave Background. It has been argued, however, that it should be possible to constrain a general class of theories of modified gravity by focusing on properties such as the growing mode, gravitational slip and the effective, time varying Newton's constant. We show that assuming certain physical requirements such as stability, metricity and gauge invariance, it is possible to come up with consistency conditions between these various parameters. In this paper we focus on theories which have, at most, 2nd derivatives in the metric variables and find restrictions that shed light on current and future experimental constraints without having to resort to a (as yet unknown) complete theory of modified gravity. We claim that future measurements of the growth of structure on small scales (i.e. from 1-200 h^{-1} Mpc) may lead to tight constraints on both dark energy and modified theories of gravity.Galaxy Zoo: Bars in Disk Galaxies
ArXiv 1003.0449 (2010)