Tracing the sound horizon scale with photometric redshift surveys
Monthly Notices of the Royal Astronomical Society Oxford University Press 411:1 (2011) 277-288
Abstract:
We propose a new method for the extraction cosmological parameters using the baryon acoustic oscillation (BAO) scale as a standard ruler in deep galaxy surveys with photometric determination of redshifts. The method consists in a simple empirical parametric fit to the angular two-point correlation function ω(θ). It is parametrized as a power law to describe the continuum and as a Gaussian to describe the BAO bump. The location of the Gaussian is used as the basis for the measurement of the sound horizon scale. This method, although simple, actually provides a robust estimation, since the inclusion of the power law and the use of the Gaussian remove the shifts which affect the local maximum. We discuss the effects of projection bias, non-linearities, redshift space distortions and photo-z precision and apply our method to a mock catalogue of the Dark Energy Survey, built upon a large N-body simulation provided by the MICE collaboration. We discuss the main systematic errors associated with our method and show that they are dominated by the photo-z uncertainty.Most massive halos with Gumbel Statistics
ArXiv 1101.2896 (2011)
Abstract:
We present an analytical calculation of the extreme value statistics for dark matter halos - that is, the probability distribution of the most massive halo within some region of the universe of specified shape and size. Our calculation makes use of the counts-in-cells formalism for the correlation functions, and the halo bias derived from the Sheth-Tormen mass function. We demonstrate the power of the method on spherical regions, comparing the results to measurements in a large cosmological dark matter simulation and achieving good agreement. Particularly good fits are obtained for the most likely value of the maximum mass and for the high-mass tail of the distribution, relevant in constraining cosmologies by observations of most massive clusters.How Does Feedback Affect Milky Way Satellite Formation?
ArXiv 1101.2232 (2011)