What the small angle CMB really tells us about the curvature of the Universe

(2009)

Authors:

Timothy Clifton, Pedro G Ferreira, Joe Zuntz

What the small angle CMB really tells us about the curvature of the Universe

ArXiv 0902.1313 (2009)

Authors:

Timothy Clifton, Pedro G Ferreira, Joe Zuntz

Abstract:

It is well known that observations of the cosmic microwave background (CMB) are highly sensitive to the spatial curvature of the Universe, k. Here we find that what is in fact being tightly constrained by small angle fluctuations is spatial curvature near the surface of last scattering, and that if we allow k to be a function of position, rather than taking a constant value everywhere, then considerable spatial curvature is permissible within our own locale. This result is of interest for the giant void models that attempt to explain the supernovae observations without Dark Energy. We find voids models with a homogeneous big bang can be compatible with the observed small angle CMB, but only if they exist in a positively curved universe. To be compatible with local measurements of H_0, however, we find that a radially varying bang time is required.

Building Merger Trees from Cosmological N-body Simulations

ArXiv 0902.0679 (2009)

Authors:

D Tweed, J Devriendt, J Blaizot, S Colombi, A Slyz

Abstract:

Although a fair amount of work has been devoted to growing Monte-Carlo merger trees which resemble those built from an N-body simulation, comparatively little effort has been invested in quantifying the caveats one necessarily encounters when one extracts trees directly from such a simulation. To somewhat revert the tide, this paper seeks to provide its reader with a comprehensive study of the problems one faces when following this route. The first step to building merger histories of dark matter haloes and their subhaloes is to identify these structures in each of the time outputs (snapshots) produced by the simulation. Even though we discuss a particular implementation of such an algorithm (called AdaptaHOP) in this paper, we believe that our results do not depend on the exact details of the implementation but extend to most if not all (sub)structure finders. We then highlight different ways to build merger histories from AdaptaHOP haloes and subhaloes, contrasting their various advantages and drawbacks. We find that the best approach to (sub)halo merging histories is through an analysis that goes back and forth between identification and tree building rather than one which conducts a straightforward sequential treatment of these two steps. This is rooted in the complexity of the merging trees which have to depict an inherently dynamical process from the partial temporal information contained in the collection of instantaneous snapshots available from the N-body simulation.

Building Merger Trees from Cosmological N-body Simulations

(2009)

Authors:

D Tweed, J Devriendt, J Blaizot, S Colombi, A Slyz

A correlation between the spectral and timing properties of AGN

Astronomy and Astrophysics 494:3 (2009) 905-912

Authors:

IE Papadakis, M Sobolewska, P Arevalo, A Markowitz, IM McHardy, L Miller, JN Reeves, TJ Turner

Abstract:

Context. We present the results from a combined study of the average X-ray spectral and timing properties of 14 nearby AGN. Aims. We investigate whether a "spectral-timing" AGN correlation exists, similar to the one observed in Cyg X-1, compare the two correlations, and constrain possible physical mechanisms responsible for the X-ray emission in compact, accreting objects. Methods. For 11 of the sources in the sample, we used all the available data from the RXTE archive, which were taken until the end of 2006. There are 7795 RXTE observations in total for these AGN, obtained over a period of ∼7-11 years. We extracted their 3-20 keV spectra and fitted them with a simple power-law model, modified by the presence of a Gaussian line (at 6.4 keV) and cold absorption, when necessary. We used the best-fit slopes to construct their sample distribution function, and we used the median of the distribution, and the mean of the best-fit slopes, which are above the 80th percentile of the distributions, to estimate the mean spectral slope of the objects. The latter estimate is more appropriate in the case when the energy spectra of the sources are significantly affected by absorption and/or reflection effects. We also used results from the literature to estimate the average spectral slope of the three remaining objects. Results. The AGN average spectral slopes are not correlated either with the black hole mass or the characteristic frequencies that were detected in the power spectra. They are positively correlated, though, with the characteristic frequency when normalised to the sources black hole mass. This correlation is similar to the spectral-timing correlation that has been observed in Cyg X-1, but not the same. Conclusions. The AGN spectral-timing correlation can be explained if we assume that the accretion rate determines both the average spectral slope and the characteristic time scales in these systems. The spectrum should steepen and the characteristic frequency should increase, proportionally, with increasing accretion rate. We also provide a quantitative expression between spectral slope and accretion rate. Thermal Comptonisation models are broadly consistent with our result, and can also explain the difference between the spectral-timing correlations in Cyg X-1 and AGN, but only if the ratio of the soft photons' luminosity to the power injected to the hot corona is proportionally related to the accretion rate. © ESO 2009.