MgII in the JWST era: a probe of Lyman continuum escape?
(2022)
MgII in the JWST era: a probe of Lyman continuum escape?
(2022)
Disaster, infrastructure and participatory knowledge: the Planetary Response Network
Citizen Science: Theory and Practice Ubiquity Press 7:1 (2022) 21-21
Abstract:
There are many challenges involved in online participatory humanitarian response. We evaluate the Planetary Response Network (PRN), a collaboration between researchers, humanitarian organizations, and the online citizen science platform Zooniverse. The PRN uses satellite and aerial image analysis to provide stakeholders with high-level situational awareness during and after humanitarian crises. During past deployments, thousands of online volunteers have compared pre- and post-event satellite images to identify damage to infrastructure and buildings, access blockages, and signs of people in distress. In addition to collectively producing aggregated “heat maps” of features that are shared with responders and decision makers, individual volunteers may also flag novel features directly using integrated community discussion software. The online infrastructure facilitates worldwide participation even for geographically focused disasters; this widespread public participation means that high-value information can be delivered rapidly and uniformly even for large-scale crises. We discuss lessons learned from deployments, place the PRN’s distributed online approach in the context of more localized efforts, and identify future needs for the PRN and similar online crisis-mapping projects. The successes of the PRN demonstrate that effective online crisis mapping is possible on a generalized citizen science platform such as the Zooniverse.Looking at the distant universe with the MeerKAT array: discovery of a luminous OH megamaser at z > 0.5
Astrophysical Journal Letters IOP Science 931:1 (2022) L7
Abstract:
In the local universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (H i), radio surveys to probe the cosmic evolution of H i in galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep H i survey, we report the first untargeted detection of an OHM at z > 0.5, LADUMA J033046.20-275518.1 (nicknamed "Nkalakatha"). The host system, WISEA J033046.26-275518.3, is an infrared-luminous radio galaxy whose optical redshift z ≈ 0.52 confirms the MeerKAT emission-line detection as OH at a redshift z OH = 0.5225 ± 0.0001 rather than H i at lower redshift. The detected spectral line has 18.4σ peak significance, a width of 459 ± 59 km s-1, and an integrated luminosity of (6.31 ± 0.18 [statistical] ± 0.31 [systematic]) × 103 L ⊙, placing it among the most luminous OHMs known. The galaxy's far-infrared luminosity L FIR = (1.576 ±0.013) × 1012 L ⊙ marks it as an ultraluminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step toward a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts.LyMAS reloaded: improving the predictions of the large-scale Lyman-α forest statistics from dark matter density and velocity fields
Monthly Notices of the Royal Astronomical Society Oxford University Press 514:3 (2022) 3222-3245