Superradiance in massive vector fields with spatially varying mass

Physical Review D American Physical Society (APS) 105:10 (2022) 104055

Authors:

Zipeng Wang, Thomas Helfer, Katy Clough, Emanuele Berti

The ALMA REBELS Survey: cosmic dust temperature evolution out to z ∼ 7

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 513:3 (2022) 3122-3135

Authors:

L Sommovigo, A Ferrara, A Pallottini, P Dayal, RJ Bouwens, R Smit, E da Cunha, I De Looze, RAA Bowler, J Hodge, H Inami, P Oesch, R Endsley, V Gonzalez, S Schouws, D Stark, M Stefanon, M Aravena, L Graziani, D Riechers, R Schneider, P van der Werf, H Algera, L Barrufet, Y Fudamoto, APS Hygate, I Labbé, Y Li, T Nanayakkara, M Topping

A fast and reliable method for the comparison of covariance matrices

Monthly Notices of the Royal Astronomical Society Oxford University Press 513:4 (2022) 5438-5445

Authors:

Tassia Ferreira, Valerio Marra

Abstract:

Covariance matrices are important tools for obtaining reliable parameter constraints. Advancements in cosmological surveys lead to larger data vectors and, consequently, increasingly complex covariance matrices, whose number of elements grows as the square of the size of the data vector. The most straightforward way of comparing these matrices, in terms of their ability to produce parameter constraints, involves a full cosmological analysis, which can be very computationally expensive. Using the concept and construction of compression schemes, which have become increasingly popular, we propose a fast and reliable way of comparing covariance matrices. The basic idea is to focus only on the portion of the covariance matrix that is relevant for the parameter constraints and quantify, via a fast Monte Carlo simulation, the difference of a second candidate matrix from the baseline one. To test this method, we apply it to two covariance matrices that were used to analyse the cosmic shear measurements for the Dark Energy Survey Year 1. We found that the uncertainties on the parameters change by 2.6 per cent, a figure in agreement with the full cosmological analysis. While our approximate method cannot replace a full analysis, it may be useful during the development and validation of codes that estimate covariance matrices. Our method takes roughly 100 times less CPUh than a full cosmological analysis.

EDGE: The sensitivity of ultra-faint dwarfs to a metallicity-dependent initial mass function

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 513:2 (2022) 2326-2334

Authors:

Mateo Prgomet, Martin P Rey, Eric P Andersson, Alvaro Segovia Otero, Oscar Agertz, Florent Renaud, Andrew Pontzen, Justin I Read

Joint constraints on cosmology and the impact of baryon feedback: Combining KiDS-1000 lensing with the thermal Sunyaev-Zeldovich effect from Planck and ACT

Astronomy and Astrophysics EDP Sciences 660 (2022) A27

Authors:

T Tröster, Aj Mead, C Heymans, Z Yan, D Alonso, M Asgari, M Bilicki, A Dvornik, H Hildebrandt, B Joachimi, A Kannawadi, K Kuijken, P Schneider, Hy Shan, L van Waerbeke, Ah Wright

Abstract:

We conduct a pseudo-C analysis of the tomographic cross-correlation between 1000 deg2 of weak-lensing data from the Kilo-Degree Survey (KiDS-1000) and the thermal Sunyaev–Zeldovich (tSZ) effect measured by Planck and the Atacama Cosmology Telescope (ACT). Using HMX, a halo-model-based approach that consistently models the gas, star, and dark matter components, we are able to derive constraints on both cosmology and baryon feedback for the first time from these data, marginalising over redshift uncertainties, intrinsic alignment of galaxies, and contamination by the cosmic infrared background (CIB). We find our results to be insensitive to the CIB, while intrinsic alignment provides a small but significant contribution to the lensing–tSZ cross-correlation. The cosmological constraints are consistent with those of other low-redshift probes and prefer strong baryon feedback. The inferred amplitude of the lensing–tSZ cross-correlation signal, which scales as σ8m/0.3)0.2, is low by ∼2 σ compared to the primary cosmic microwave background constraints by Planck. The lensing–tSZ measurements are then combined with pseudo-C measurements of KiDS-1000 cosmic shear into a novel joint analysis, accounting for the full cross-covariance between the probes, providing tight cosmological constraints by breaking parameter degeneracies inherent to both probes. The joint analysis gives an improvement of 40% on the constraint of S8 = σ8Ωm/0.3 over cosmic shear alone, while providing constraints on baryon feedback consistent with hydrodynamical simulations, demonstrating the potential of such joint analyses with baryonic tracers such as the tSZ effect. We discuss remaining modelling challenges that need to be addressed if these baryonic probes are to be included in future precision-cosmology analyses.