Influence of high-latitude blocking and the northern stratospheric polar vortex on cold-air outbreaks under Arctic amplification of global warming
Environmental Research: Climate IOP Publishing 3:4 (2024) 042004
Abstract:
It is widely accepted that Arctic amplification (AA)—enhanced Arctic warming relative to global warming—will increasingly moderate cold-air outbreaks (CAOs) to the midlatitudes. Yet, some recent studies also argue that AA over the last three decades to the rest of the present century may contribute to more frequent severe winter weather including disruptive cold spells. To prepare society for future extremes, it is necessary to resolve whether AA and severe midlatitude winter weather are coincidental or physically linked. Severe winter weather events in the northern continents are often related to a range of stratospheric polar vortex (SPV) configurations and atmospheric blocking, but these dynamical drivers are complex and still not fully understood. Here we review recent research advances and paradigms including a nonlinear theory of atmospheric blocking that helps to explain the location, timing and duration of AA/midlatitude weather connections, studies of the polar vortex’s zonal asymmetric and intra-seasonal variations, its southward migration over continents, and its surface impacts. We highlight novel understanding of SPV variability—polar vortex stretching and a stratosphere–troposphere oscillation—that have remained mostly hidden in the predominant research focus on sudden stratospheric warmings. A physical explanation of the two-way vertical coupling process between the polar vortex and blocking highs, taking into account local surface conditions, remains elusive. We conclude that evidence exists for tropical preconditioning of Arctic-midlatitude climate linkages. Recent research using very large-ensemble climate modelling provides an emerging opportunity to robustly quantify internal atmospheric variability when studying the potential response of midlatitude CAOs to AA and sea-ice loss.Reply to Comment on ‘Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern’
Environmental Research Letters IOP Publishing 20:1 (2024) 018001
Abstract:
Circumglobal teleconnections from wave-like patterns in the mid-latitude jets can lead to synchronized weather extremes in the mid-latitudes of Northern and Southern hemispheres. The simultaneous occurrence of record breaking and persistent northern hemisphere temperature anomalies in Summer 2018 were previously discussed in the context of a persistent zonally elongated wave-7 pattern that stretched over large parts of the northern hemisphere over an extended time and let to considerable societal impacts. Various diagnostics have been put forward to quantify and detect such wave patterns, many of which incorporate low-pass time filtering to separate signal from noise. In this response we argue that advancing our understanding of the large-scale circulation’s response to anthropogenic climate change and reducing associated uncertainties in future climate risk requires a diverse range of perspectives and diagnostics from both the climate and weather research communities.Novel physics of escaping secondary atmospheres may shape the cosmic shoreline
(2024)
Role of the quasi-biennial oscillation in alleviating biases in the semi-annual oscillation
Weather and Climate Dynamics Copernicus Publications 5:4 (2024) 1489-1504
Abstract:
Model representations of the stratospheric semi-annual oscillation (SAO) show a common easterly bias, with a weaker westerly phase and stronger easterly phase compared to observations. Previous studies have shown that both resolved and parameterized tropical waves in the upper stratosphere are too weak. These waves propagate vertically through the underlying region dominated by the stratospheric quasi-biennial oscillation (QBO) before reaching the SAO altitudes. The influence of biases in the modelled QBO on the representation of the SAO is therefore explored. Correcting the QBO biases helps to reduce the SAO easterly bias through improved filtering of resolved and parameterized waves that contribute to improving both the westerly and the easterly phases of the SAO. The time-averaged zonal-mean zonal winds at SAO altitudes change by up to 25 % in response to the QBO bias corrections. The annual cycle in the equatorial upper stratosphere is improved as well. Most of the improvements in the SAO occur during the QBO easterly phase, coinciding with the period when the model's QBO exhibits the largest bias. Nevertheless, despite correcting for the QBO bias, there remains a substantial easterly bias in the SAO, suggesting that westerly wave forcing in the upper stratosphere and lower mesosphere is still severely under-represented.Forecasting for energy resilience
Weather (2024)