Advancing Our Understanding of Eddy-driven Jet Stream Responses to Climate Change – A Roadmap
Current Climate Change Reports Springer 11:1 (2024) 2
Abstract:
Purpose of Review: Extratropical jets and associated storm tracks significantly influence weather and regional climate across various timescales. Understanding jet responses to climate change is essential for reliable regional climate projections. This review serves two main purposes: (1) to provide an accessible overview of extratropical jet dynamics and a comprehensive examination of current challenges and uncertainties in predicting jet responses to greenhouse gas increases and (2) to suggest innovative experiments to advance our understanding of these responses. Recent Findings: While successive generations of climate model ensembles consistently project a mean poleward shift of the midlatitude zonal-mean maximum winds, there remains considerable intermodel spread and large uncertainty across seasonal and regional jet responses. Of particular note is our limited understanding of how these jets respond to the intricate interplay of multiple concurrent drivers, such as the strong warming in polar and tropical regions, and the relative importance of each factor. Furthermore, the difficulty of simulating processes requiring high resolution, such as those linked to sharp sea surface temperature gradients or diabatic effects related to tropical convection and extratropical cyclones, has historically hindered progress. Summary: We advocate for a collaborative effort to enhance our understanding of the jet stream response to climate change. We propose a series of new experiments that take advantage of recent advances in computing power and modelling capabilities to better resolve small-scale processes such as convective circulations, which we consider essential for a good representation of jet dynamics.Quasi-Biennial Oscillation
Chapter in Atmospheric oscillations: sources of subseasonal-to-seasonal variability and predictability, Elsevier (2024) 253-275
Abstract:
The Quasi-Biennial Oscillation (QBO) is one of the most cyclic phenomena in the atmosphere except for the annular and diurnal cycles, which provide the predictability source for subseasonal-to-seasonal forecasts on the globe. The QBO is generated by the interaction between the background circulation and the equatorial waves, which cover a wide spectrum consisting of those that are eastward- and westward-propagating. The QBO can affect the climate in both the Northern and Southern Hemispheres through at least three dynamic pathways, including the stratospheric polar vortex pathway, the subtropical downward-arching zonal wind pathway, and the tropical convection pathway. The impact of the QBO on the extratropics is projected to strengthen in future scenario experiments, although the maximum QBO wind magnitude gradually decreased in recent decades. As a newly emerging feature, the QBO disruption during the westerly phase is mainly caused by the extremely active Rossby waves from the extratropics. The QBO disruptions are likely to increase in a warmer climate background.Spatio-temporal averaging of jets obscures the reinforcement of baroclinicity by latent heating
Weather and Climate Dynamics Copernicus Publications 5:4 (2024) 1269-1286
Abstract:
Latent heating modifies the jet stream by modifying the vertical geostrophic wind shear, thereby altering the potential for baroclinic development. Hence, correctly representing diabatic effects is important for modelling the mid-latitude atmospheric circulation and variability. However, the direct effects of diabatic heating remain poorly understood. For example, there is no consensus on the effect of latent heating on the cross-jet temperature contrast. We show that this disagreement is attributable to the choice of spatio-temporal averaging. Jet representations relying on averaged wind tend to have the strongest latent heating on the cold flank of the jet, thus weakening the cross-jet temperature contrast. In contrast, jet representations reflecting the two-dimensional instantaneous wind field have the strongest latent heating on the warm flank of the jet. Furthermore, we show that latent heating primarily occurs on the warm flank of poleward directed instantaneous jets, which is the case for all storm tracks and seasons.An ocean memory perspective: disentangling atmospheric control of decadal variability in the North Atlantic Ocean
Geophysical Research Letters Wiley 51:20 (2024) e2024GL110333
Abstract:
An ocean memory framework is proposed to reveal the atmosphere's influence on ocean temperatures. Anomalous atmospheric forcing alters the ocean state through two mechanisms: short-term, local effects involving air sea heat fluxes and Ekman circulation, and long-term, far-field effects involving changes from overturning and gyre circulations. The framework employs the Green function's method to incorporate both effects, enabling the quantification of ocean memory and the contribution of atmospheric forcing to ocean thermal variability. The framework is employed to examine the North Atlantic Oscillation's (NAO) influence on the North Atlantic Ocean variability, including the Atlantic Multidecadal Variability, with its memory estimated to be years. The NAO and variability in the North Atlantic jet speed explain up to 30% of ocean decadal variability, primarily driven by temporal changes in ocean heat transport. Therefore, decadal fluctuations in ocean temperatures cannot be accurately modeled solely as a passive response to stochastic atmospheric forcing.Intraseasonal shift in the wintertime North Atlantic jet structure projected by CMIP6 models
npj Climate and Atmospheric Science Nature Research 7:1 (2024) 234