A momentum budget study of the semi-annual oscillation in the Whole Atmosphere Community Climate Model

Quarterly Journal of the Royal Meteorological Society, 1–22

Authors:

Aleena M. Jaison, Lesley J. Gray, Scott Osprey, Anne K. Smith, Rolando R. Garcia

Abstract:

The representation of the semi-annual oscillation (SAO) in climate models shows a common easterly bias of several tens of metres per second compared to observations. These biases could be due to deficiencies in eastward tropical wave forcing, the position or strength of the climatological summertime jet or the strength/timing of the Brewer–Dobson circulation. This motivates further analysis of the momentum budget of the upper stratosphere within models and a more detailed comparison with reanalyses to determine the origin of the bias. In this study, the transformed Eulerian mean momentum equation is used to evaluate the different forcing terms that contribute to the SAO in the MERRA2 reanalysis dataset. This is then compared with the equivalent analysis using data from a climate simulation of the Whole Atmosphere Community Climate Model (WACCM). The comparison shows that WACCM underestimates eastward forcing by both resolved and parameterised waves at equatorial latitudes when compared with MERRA2 and also has a weaker tropical upwelling above 1 hPa.

A momentum budget study of the semi‐annual oscillation in the Whole Atmosphere Community Climate Model

Quarterly Journal of the Royal Meteorological Society Wiley (2024)

Authors:

Aleena M Jaison, Lesley J Gray, Scott Osprey, Anne K Smith, Rolando R Garcia

Abstract:

The representation of the semi‐annual oscillation (SAO) in climate models shows a common easterly bias of several tens of metres per second compared to observations. These biases could be due to deficiencies in eastward tropical wave forcing, the position or strength of the climatological summertime jet or the strength/timing of the Brewer–Dobson circulation. This motivates further analysis of the momentum budget of the upper stratosphere within models and a more detailed comparison with reanalyses to determine the origin of the bias. In this study, the transformed Eulerian mean momentum equation is used to evaluate the different forcing terms that contribute to the SAO in the MERRA2 reanalysis dataset. This is then compared with the equivalent analysis using data from a climate simulation of the Whole Atmosphere Community Climate Model (WACCM). The comparison shows that WACCM underestimates eastward forcing by both resolved and parameterised waves at equatorial latitudes when compared with MERRA2 and also has a weaker tropical upwelling above 1 hPa.

An introduction to weather, climate and the energy sector

Weather Wiley (2024)

Disentangling North Atlantic Ocean–Atmosphere Coupling Using Circulation Analogs

Journal of Climate American Meteorological Society 37:14 (2024) 3791-3805

Authors:

Matthew Patterson, Christopher O’Reilly, Jon Robson, Tim Woollings

Carbon Cycle Instability for High-CO 2 Exoplanets: Implications for Habitability

The Astrophysical Journal American Astronomical Society 970:1 (2024) 32

Authors:

RJ Graham, RT Pierrehumbert

Abstract:

Implicit in the definition of the classical circumstellar habitable zone (HZ) is the hypothesis that the carbonate-silicate cycle can maintain clement climates on exoplanets with land and surface water across a range of instellations by adjusting atmospheric CO2 partial pressure (pCO2). This hypothesis is made by analogy to the Earth system, but it is an open question whether silicate weathering can stabilize climate on planets in the outer reaches of the HZ, where instellations are lower than those received by even the Archean Earth and CO2 is thought likely to dominate atmospheres. Since weathering products are carried from land to ocean by the action of water, silicate weathering is intimately coupled to the hydrologic cycle, which intensifies with hotter temperatures under Earth-like conditions. Here, we use global climate model simulations to demonstrate that the hydrologic cycle responds counterintuitively to changes in climate on planets with CO2-H2O atmospheres at low instellations and high pCO2, with global evaporation and precipitation decreasing as pCO2 and temperatures increase at a given instellation. Within the Maher & Chamberlain (or MAC) weathering formulation, weathering then decreases with increasing pCO2 for a range of instellations and pCO2 typical of the outer reaches of the HZ, resulting in an unstable carbon cycle that may lead to either runaway CO2 accumulation or depletion of CO2 to colder (possibly snowball) conditions. While the behavior of the system has not been completely mapped out, the results suggest that silicate weathering could fail to maintain habitable conditions in the outer reaches of the nominal HZ.