The Cloud Radiative Response to Surface Warming Weakens Hydrological Sensitivity
Geophysical Research Letters Wiley 52:2 (2025) e2024GL112368
Abstract:
Precipitation is expected to increase in a warmer global climate, yet how sensitive precipitation is to warming depends on poorly constrained cloud radiative processes. Clouds respond to surface warming in ways that alter the atmosphere's ability to radiatively cool and hence form precipitation. Here we examine the links between cloud responses to warming, atmospheric radiative fluxes, and hydrological sensitivity in AMIP6 simulations. The clearest impacts come from high clouds, which reduce atmospheric radiative cooling as they rise in altitude in response to surface warming. Using cloud locking, we demonstrate that high cloud radiative changes weaken Earth's hydrological sensitivity to surface warming. The total impact of cloud radiative effects on hydrological sensitivity is halved by interactions between cloud and clear‐sky radiative effects, yet is sufficiently large to be a major source of uncertainty in hydrological sensitivity.Barotropic Instability
Chapter in Reference Module in Earth Systems and Environmental Sciences, Elsevier (2025)
Abstract:
Barotropic instability represents a class of instabilities, usually of parallel shear flows, for which gravity and buoyancy play a negligible role, at least in their energetics. It is not restricted to purely barotropic fluids (for which ρ = ρ(p), where ρ is density and p is pressure) but can also apply to flows which are stratified and exhibit vertical shear, often leading to instabilities with mixed barotropic and baroclinic characteristics. The primary attribute of barotropic instability is usually taken to be the dominance of energy exchanges in which the kinetic energy of a perturbation grows principally at the expense of the kinetic energy of the basic state. Here we present an introduction to the basic mechanisms involved and the factors that determine the necessary and/or sufficient conditions for instability. Several examples are presented and the occurrence and subsequent nonlinear evolution of the instability is illustrated with reference to both laboratory experiments and observations in the atmospheres and oceans of the Earth and other planets in the Solar System.
ESA-CAIRT EARTH EXPLORER 11 REPORT FOR MISSION SELECTION
ESA (2025). Report for Mission Selection: Earth Explorer 11 Candidate Mission CAIRT, European Space Agency, Noordwijk, The Netherlands, ESA-EOPSM-CAIR-RP-4797, 230pp
Abstract:
The Changing-Atmosphere Infrared Tomography Explorer CAIRT – an infrared limb-imaging satellite concept to chart the middle atmosphere in the climate system
Bulletin of the American Meteorological Society, under review, 2025
Abstract:
Magma Ocean Evolution at Arbitrary Redox State
Journal of Geophysical Research: Planets American Geophysical Union 129:12 (2024) e2024JE008576