Escaping Helium and a Highly Muted Spectrum Suggest a Metal-enriched Atmosphere on Sub-Neptune GJ 3090 b from JWST Transit Spectroscopy

The Astrophysical Journal Letters American Astronomical Society 985:1 (2025) l10

Authors:

Eva-Maria Ahrer, Michael Radica, Caroline Piaulet-Ghorayeb, Eshan Raul, Lindsey Wiser, Luis Welbanks, Lorena Acuña, Romain Allart, Louis-Philippe Coulombe, Amy Louca, Ryan MacDonald, Morgan Saidel, Thomas M Evans-Soma, Björn Benneke, Duncan Christie, Thomas G Beatty, Charles Cadieux, Ryan Cloutier, René Doyon, Jonathan J Fortney, Anna Gagnebin, Cyril Gapp, Hamish Innes, Heather A Knutson, Thaddeus Komacek, Joshua Krissansen-Totton, Yamila Miguel, Raymond Pierrehumbert, Pierre-Alexis Roy, Hilke E Schlichting

Attributing climate and weather extremes to Northern Hemisphere sea ice and terrestrial snow: progress, challenges and ways forward

npj Climate and Atmospheric Science Nature Research 8:1 (2025) 166

Authors:

Kunhui Ye, Judah Cohen, Hans W Chen, Shiyue Zhang, Dehai Luo, Mostafa Essam Hamouda

Abstract:

Sea ice and snow are crucial components of the cryosphere and the climate system. Both sea ice and spring snow in the Northern Hemisphere (NH) have been decreasing at an alarming rate in a changing climate. Changes in NH sea ice and snow have been linked with a variety of climate and weather extremes including cold spells, heatwaves, droughts and wildfires. Understanding of these linkages will benefit the predictions of climate and weather extremes. However, existing work on this has been largely fragmented and is subject to large uncertainties in physical pathways and methodologies. This has prevented further substantial progress in attributing climate and weather extremes to sea ice and snow change, and will potentially risk the loss of a critical window for effective climate change mitigation. In this review, we synthesize the current progress in attributing climate and weather extremes to sea ice and snow change by evaluating the observed linkages, their physical pathways and uncertainties in these pathways, and suggesting ways forward for future research efforts. By adopting the same framework for both sea ice and snow, we highlight their combined influence and the cryospheric feedback to the climate system. We suggest that future research will benefit from improving observational networks, addressing the causality and complexity of the linkages using multiple lines of evidence, adopting large-ensemble approaches and artificial intelligence, achieving synergy between different methodologies/disciplines, widening the context, and coordinated international collaboration.

The latent heating feedback on the mid-latitude circulation

(2025)

Authors:

Henrik Auestad, Abel Shibu, Paulo Ceppi, Tim Woollings

Circulation and Cloud Responses to Patterned SST Warming

Geophysical Research Letters Wiley 52:8 (2025) e2024GL112543

Authors:

Anna Mackie, Michael P Byrne, Emily K Van de Koot, Andrew IL Williams

Abstract:

The climatological atmospheric circulation is key to establishing the tropical “pattern effect”, whereby cloud feedbacks induced by sea surface temperature (SST) warming depend on the spatial structure of that warming. But how patterned warming‐induced circulation changes affect cloud responses is less clear. Here we use idealized simulations with prescribed SST perturbations to understand the contributions to changes in tropical‐mean cloud radiative effects (CRE) from different circulation regimes. We develop a novel framework based on moist static energy to understand the circulation response, targeting in particular the bulk circulation metric of ascent fraction. Warming concentrated in regions of ascent leads to a strong “upped‐ante” effect and spatial contraction of the ascending region. Our framework reveals substantial contributions to tropical‐mean CRE changes not only from traditional “pattern effect” regimes, but also from the intensification of convection in ascent regions as well as a smaller contribution from cloud changes in convective margins.

No detectable decrease in extreme cold-related mortality in Canada from Arctic sea ice loss

Environmental Research Letters IOP Publishing 20:4 (2025) 044042

Authors:

Emily Ball, YT Eunice Lo, Peter AG Watson, Eric Lavigne, James Screen, Kunhui Ye, Dann Mitchell

Abstract:

Arctic amplification (AA), the phenomenon by which Arctic surface temperatures are warming faster than the global average, may have significant unexplored impacts on temperature-related mortality in human populations across Canada. We explore the role of Arctic sea ice loss, a key driver of AA, in changing cold temperature extremes across Canada and their impact on human mortality. We use a multi-model ensemble of climate simulations from the Polar Amplification Model Intercomparison Project and a distributed lag nonlinear mortality model in 27 regions covering Canada to quantify the role of Arctic sea ice loss in changing human mortality in the cold season. We find that despite a robust increase in 5th percentile temperatures across eastern Canada, there is no detectable decrease in mortality associated with the most extreme cold, due to mortality in many regions having low sensitivity to warming of cold extremes. The study attributes the temperature-related mortality impact of a physical process, namely Arctic sea ice loss, and highlights Canada’s robust adaptation to extreme cold.