The HadGEM2-ES implementation of CMIP5 centennial simulations

GEOSCIENTIFIC MODEL DEVELOPMENT 4:3 (2011) 543-570

Authors:

CD Jones, JK Hughes, N Bellouin, SC Hardiman, GS Jones, J Knight, S Liddicoat, FM O'Connor, RJ Andres, C Bell, K-O Boo, A Bozzo, N Butchart, P Cadule, KD Corbin, M Doutriaux-Boucher, P Friedlingstein, J Gornall, L Gray, PR Halloran, G Hurtt, WJ Ingram, J-F Lamarque, RM Law, M Meinshausen, S Osprey, EJ Palin, L Parsons Chini, T Raddatz, MG Sanderson, AA Sellar, A Schurer, P Valdes, N Wood, S Woodward, M Yoshioka, M Zerroukat

The structure and evolution of the stratospheric vortex in response to natural forcings

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 116 (2011) ARTN D15110

Authors:

DM Mitchell, LJ Gray, AJ Charlton-Perez

Principles of Planetary Climate

Cambridge University Press (CUP), 2010

Atmospheric blocking and mean biases in climate models

Journal of Climate 23:23 (2010) 6143-6152

Authors:

AA Scaife, T Woollings, J Knight, G Martin, T Hinton

Abstract:

Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking. © 2010 American Meteorological Society.

Solar influences on climate

Reviews of Geophysics 48:4 (2010)

Authors:

LJ Gray, J Beer, M Geller, JD Haigh, M Lockwood, K Matthes, U Cubasch, D Fleitmann, G Harrison, L Hood, J Luterbacher, GA Meehl, D Shindell, B Van Geel, W White

Abstract:

Understanding the influence of solar variability on the Earth's climate requires knowledge of solar variability, solar-terrestrial interactions, and the mechanisms determining the response of the Earth's climate system. We provide a summary of our current understanding in each of these three areas. Observations and mechanisms for the Sun's variability are described, including solar irradiance variations on both decadal and centennial time scales and their relation to galactic cosmic rays. Corresponding observations of variations of the Earth's climate on associated time scales are described, including variations in ozone, temperatures, winds, clouds, precipitation, and regional modes of variability such as the monsoons and the North Atlantic Oscillation. A discussion of the available solar and climate proxies is provided. Mechanisms proposed to explain these climate observations are described, including the effects of variations in solar irradiance and of charged particles. Finally, the contributions of solar variations to recent observations of global climate change are discussed. © 2010 by the American Geophysical Union.