Stratospheric prognostic ozone for seamless Earth System Models

Copernicus Publications (2022)

Authors:

Beatriz Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley Gray, Robin Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore Shepherd, Nils Wedi, Antje Weisheimer

The global reach of gravity waves at the stratospheric speed limit from the 2022 Hunga Tonga volcanic eruption

Copernicus Publications (2022)

Authors:

Neil Hindley, Lars Hoffmann, M Joan Alexander, Cathryn Mitchell, Scott Osprey, Cora Randall, Corwin Wright, Jia Yue

The CAIRT Earth Explorer 11 mission: A way towards global GW momentum budgets

Copernicus Publications (2022)

Authors:

Peter Preusse, Scott Osprey, Inna Polichtchouk, Joern Ungermann, Martyn Chipperfield, Quentin Errera, Felix Friedl-Vallon, Bernd Funke, Sophie Godin-Beekmann, Alex Hoffmann, Alizee Malavart, Piera Raspollini, Bjoern-Martin Sinnhuber, Pekka Verronen, Kaley Walker

Understanding extreme events with multi-thousand member high-resolution global atmospheric simulations

Copernicus Publications (2022)

Authors:

Peter Watson, Sarah Sparrow, William Ingram, Simon Wilson, Giuseppe Zappa, Emanuele Bevacqua, Nicholas Leach, David Sexton, Richard Jones, Marie Drouard, Daniel Mitchell, David Wallom, Tim Woollings, Myles Allen

An NAO-dominated mode of atmospheric circulation drives large decadal changes in wintertime surface climate and snow mass over Eurasia

Environmental Research Letters IOP Publishing 17:4 (2022) 044025

Authors:

Kunhui Ye, Gabriele Messori, Deliang Chen, Tim Woollings

Abstract:

The leading mode of wintertime atmospheric variability over the North Atlantic-North Eurasia sector is dominated by the North Atlantic Oscillation (NAO) and accounts for more than one third of the total variability. This study explores the influences of the leading mode on decadal climate variability of Northern Eurasia. We focus on the little-explored decadal covariations of surface air temperature (SAT), snowfall, snow water equivalent (SWE) and snow cover over the region, using extensive model output from the Coupled Model Intercomparison Project sixth phase. Recent decadal trends (−0.92σ per decade) in the leading mode identified, are found to be largely a manifestation of internal climate variability (at least two thirds from the most conservative estimate). These internally-generated decadal trends strongly contributed to recent trends in SAT, snowfall, SWE and snow cover over Eurasia. External forcings should have played a minor role over Eurasia as they usually suggest opposite decadal trends to those observed. An exception is found for snowfall and SWE in east Eurasia, for which external forcings may have driven a large part of the recent upward trends, equally as important as the NAO-dominated mode. This points to a complex interplay between internally-generated and externally-forced climate variability over Northern Eurasia. Model discrepancies are identified in reproducing the linkages between the leading mode and the Eurasian surface climate variability. The internally-generated variability of this leading mode thus represents a large source of uncertainty in future decadal climate projections over Eurasia and, due to the memory effects of snow, also in modelling springtime climate variability.