Understanding climate risk in future energy systems: an energy-climate data hackathon

Bulletin of the American Meteorological Society American Meteorological Society 103:5 (2022) E1321-E1329

Authors:

James C Fallon, Hannah C Bloomfield, David J Brayshaw, Sarah Sparrow, David CH Wallom, Tim Woollings, Kate Brown, Laura Dawkins, Erika Palin, Nikolaus Houben, Daniel Huppmann, Bruno U Schyska

Abstract:

What: Approximately 40 participants – with expertise spanning energy, computer science, weather and climate research -– joined a week-long Energy-Climate data “hackathon” in June 2021. It was hosted by the Universities of Oxford and Reading in partnership with the UK Met Office as part of a series of themed hackathons supported by the Met Office and held in the run-up to the UN COP26 conference. Six projects were initiated and developed by teams over the course of the week, supported by access to state-of-the-art computational resources on the UK’s CEDA-JASMIN service, and stimulated by keynote speakers from industry and academia. The hackathon concluded with teams presenting their outputs to a panel of invited experts. Several teams plan to build on their hackathon success in publications, ongoing collaborations and research funding proposals. When: 18th May (half-day “scoping” event) & 21st-25th June 2021 (main hackathon) Where: Online via Zoom and Gather.Town, supported by Slack communication channels Affiliations: Initiated by: University of Oxford Dr Sarah Sparrow, Professor David Wallom, Professor Tim Woollings, & University of Reading Professor David Brayshaw, Dr Hannah Bloomfield, In partnership with the Met Office, the UK’s national meteorological service, and with support from the UK’s CEDA-JASMIN service and Gurobi optimization software.

Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets

npj Climate and Atmospheric Science Springer Nature 5 (2022) 5

Authors:

Myles R Allen, Glen P Peters, Keith P Shine, Christian Azar, Paul Balcombe, Olivier Boucher, Michelle Cain, Philippe Ciais, William Collins, Piers M Forster, Dave J Frame, Pierre Friedlingstein, Claire Fyson, Thomas Gasser, Bill Hare, Stuart Jenkins, Steven P Hamburg, Daniel JA Johansson, John Lynch, Adrian Macey, Johannes Morfeldt, Alexander Nauels, Ilissa Ocko, Michael Oppenheimer, Stephen W Pacala, Raymond Pierrehumbert, Joeri Rogelj, Michiel Schaeffer, Carl F Schleussner, Drew Shindell, Ragnhild B Skeie, Stephen M Smith, Katsumasa Tanaka

Influence of the Solar Cycle on the North Atlantic Oscillation

Journal of Geophysical Research: Atmospheres American Geophysical Union (AGU) 127:1 (2022)

Authors:

Yuhji Kuroda, Kunihiko Kodera, Kohei Yoshida, Seiji Yukimoto, Lesley Gray

SST-driven variability of the East Asian summer jet on a decadal time-scale in CMIP6 models

Quarterly Journal of the Royal Meteorological Society Wiley 148:743 (2021) 581-598

Authors:

Matthew Patterson, Christopher O'Reilly, Tim Woollings, Antje Weisheimer, Bo Wu

Abstract:

The East Asian summer jet (EASJ) is an important component of the East Asian summer monsoon system and its variability is correlated with precipitation and surface temperature variations over this region. Whilst many studies have considered the interannual variability of the EASJ, less is known about variations on a decadal time-scale. This study investigates the relationship between decadal EASJ variability and sea surface temperatures (SSTs) and thus the potential predictability that SSTs may provide. Given the relatively short observational record, we make use of the long pre-industrial control simulations in the Coupled Model Intercomparison Project phase 6 (CMIP6) in addition to a large ensemble of atmosphere-only experiments, forced with random SST patterns. We then create an SST-based reconstruction of the dominant modes of EASJ variability in the CMIP6 models, finding a median EASJ–reconstruction correlation for the dominant mode of 0.43. Much of the skill in the reconstruction arises from variations in Pacific SSTs, however the tropical Atlantic also makes a significant contribution. These findings suggest the potential for multi-year predictions of the EASJ, provided that skilful SST forecasts are available.

Convection modeling of pure-steam atmospheres

Astrophysical Journal Letters American Astronomical Society 923:1 (2021) L15

Authors:

Xianyu Tan, Maxence Lefèvre, Raymond T Pierrehumbert

Abstract:

Condensable species are crucial to shaping planetary climate. A wide range of planetary climate systems involve understanding nondilute condensable substances and their influence on climate dynamics. There has been progress on large-scale dynamical effects and on 1D convection parameterization, but resolved 3D moist convection remains unexplored in nondilute conditions, though it can have a profound impact on temperature/humidity profiles and cloud structure. In this work, we tackle this problem for pure-steam atmospheres using three-dimensional, high-resolution numerical simulations of convection in postrunaway atmospheres. We show that the atmosphere is composed of two characteristic regions, an upper condensing region dominated by gravity waves and a lower noncondensing region characterized by convective overturning cells. Velocities in the condensing region are much smaller than those in the lower, noncondensing region, and the horizontal temperature variation is small. Condensation in the thermal photosphere is largely driven by radiative cooling and tends to be statistically homogeneous. Some condensation also happens deeper, near the boundary of the condensing region, due to triggering by gravity waves and convective penetrations and exhibits random patchiness. This qualitative structure is insensitive to varying model parameters, but quantitative details may differ. Our results confirm theoretical expectations that atmospheres close to the pure-steam limit do not have organized deep convective plumes in the condensing region. The generalized convective parameterization scheme discussed in Ding & Pierrehumbert is appropriate for handling the basic structure of atmospheres near the pure-steam limit but cannot capture gravity waves and their mixing which appear in 3D convection-resolving models.