Understanding climate risk in future energy systems: an energy-climate data hackathon
Bulletin of the American Meteorological Society American Meteorological Society 103:5 (2022) E1321-E1329
Abstract:
What: Approximately 40 participants – with expertise spanning energy, computer science, weather and climate research -– joined a week-long Energy-Climate data “hackathon” in June 2021. It was hosted by the Universities of Oxford and Reading in partnership with the UK Met Office as part of a series of themed hackathons supported by the Met Office and held in the run-up to the UN COP26 conference. Six projects were initiated and developed by teams over the course of the week, supported by access to state-of-the-art computational resources on the UK’s CEDA-JASMIN service, and stimulated by keynote speakers from industry and academia. The hackathon concluded with teams presenting their outputs to a panel of invited experts. Several teams plan to build on their hackathon success in publications, ongoing collaborations and research funding proposals. When: 18th May (half-day “scoping” event) & 21st-25th June 2021 (main hackathon) Where: Online via Zoom and Gather.Town, supported by Slack communication channels Affiliations: Initiated by: University of Oxford Dr Sarah Sparrow, Professor David Wallom, Professor Tim Woollings, & University of Reading Professor David Brayshaw, Dr Hannah Bloomfield, In partnership with the Met Office, the UK’s national meteorological service, and with support from the UK’s CEDA-JASMIN service and Gurobi optimization software.Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets
npj Climate and Atmospheric Science Springer Nature 5 (2022) 5
Influence of the Solar Cycle on the North Atlantic Oscillation
Journal of Geophysical Research: Atmospheres American Geophysical Union (AGU) 127:1 (2022)
SST-driven variability of the East Asian summer jet on a decadal time-scale in CMIP6 models
Quarterly Journal of the Royal Meteorological Society Wiley 148:743 (2021) 581-598
Abstract:
The East Asian summer jet (EASJ) is an important component of the East Asian summer monsoon system and its variability is correlated with precipitation and surface temperature variations over this region. Whilst many studies have considered the interannual variability of the EASJ, less is known about variations on a decadal time-scale. This study investigates the relationship between decadal EASJ variability and sea surface temperatures (SSTs) and thus the potential predictability that SSTs may provide. Given the relatively short observational record, we make use of the long pre-industrial control simulations in the Coupled Model Intercomparison Project phase 6 (CMIP6) in addition to a large ensemble of atmosphere-only experiments, forced with random SST patterns. We then create an SST-based reconstruction of the dominant modes of EASJ variability in the CMIP6 models, finding a median EASJ–reconstruction correlation for the dominant mode of 0.43. Much of the skill in the reconstruction arises from variations in Pacific SSTs, however the tropical Atlantic also makes a significant contribution. These findings suggest the potential for multi-year predictions of the EASJ, provided that skilful SST forecasts are available.Convection modeling of pure-steam atmospheres
Astrophysical Journal Letters American Astronomical Society 923:1 (2021) L15