The Impact of Turbulent Vertical Mixing in the Venus Clouds on Chemical Tracers
ArXiv 2210.0924 (2022)
Venus boundary layer dynamics: eolian transport and convective vortex
ArXiv 2210.09219 (2022)
CO2 ocean bistability on terrestrial exoplanets
Journal of Geophysical Research: Planets American Geophysical Union 127:10 (2022) e2022JE007456
Abstract:
Cycling of carbon dioxide between the atmosphere and interior of rocky planets can stabilize global climate and enable planetary surface temperatures above freezing over geologic time. However, variations in global carbon budget and unstable feedback cycles between planetary sub-systems may destabilize the climate of rocky exoplanets toward regimes unknown in the Solar System. Here, we perform clear-sky atmospheric radiative transfer and surface weathering simulations to probe the stability of climate equilibria for rocky, ocean-bearing exoplanets at instellations relevant for planetary systems in the outer regions of the circumstellar habitable zone. Our simulations suggest that planets orbiting G- and F-type stars (but not M-type stars) may display bistability between an Earth-like climate state with efficient carbon sequestration and an alternative stable climate equilibrium where CO2 condenses at the surface and forms a blanket of either clathrate hydrate or liquid CO2. At increasing instellation and with ineffective weathering, the latter state oscillates between cool, surface CO2-condensing and hot, non-condensing climates. CO2 bistable climates may emerge early in planetary history and remain stable for billions of years. The carbon dioxide-condensing climates follow an opposite trend in pCO2 versus instellation compared to the weathering-stabilized planet population, suggesting the possibility of observational discrimination between these distinct climate categories.The strong role of external forcing in seasonal forecasts of European summer temperature
Environmental Research Letters IOP Publishing 17:10 (2022) 104033
Abstract:
Since the 1980s, external forcings from increasing greenhouse gases and declining aerosols have had a large effect on European summer temperatures. These forcings may therefore provide an important source of forecast skill, even for timescales as short as a season ahead. However, the relative importance of external forcings for seasonal forecasts has thus far received little attention, particularly on a regional scale. In this study, we investigate forcing-induced skill by comparing the near-surface temperature skill of a multi-model ensemble of seasonal predictions from the Copernicus Climate Change Service archive to that of an uninitialised ensemble of Coupled Model Intercomparison Project phase 6 projections for European summers (June–July–August) spanning the years 1993–2016. As expected, predictive skill over southern Europe is larger for initialised seasonal predictions compared to uninitialised climate projections. However, for northern Europe, we find that predictive skill is generally small in current seasonal models and surprisingly even smaller compared to uninitialised climate projections. These results imply that further research is necessary to understand the role of external forcing on seasonal temperature variations over Europe.Explaining and predicting earth system change: a world climate research programme call to action
Bulletin of the American Meteorological Society American Meteorological Society 104:1 (2022) E325-E339