North-West Europe hottest days are warming twice as fast as mean summer days

Geophysical Research Letters American Geophysical Union 50:10 (2023) e2023GL102757

Abstract:

Europe has seen a rapid increase in the frequency and intensity of hot extremes in recent decades. In this study it is shown, using ERA5 reanalysis data 1960–2021, that the hottest summer days in North-West Europe are warming approximately twice as fast as mean summer days. Moreover, this pattern stands out as relatively unusual across the Northern Hemisphere. It is also shown that comprehensive climate models fail to capture this difference in trends. A hypothesis is suggested to explain the differential rate of warming between the mean and hottest days, namely that the hottest days are often linked to warm advection from Iberia and North Africa, areas that are warming faster than North-West Europe. This hypothesis can account for about 25% of the difference between ERA5 and a climate model ensemble and hence further research is needed to understand the drivers of the differing trends in mean and extreme temperature.

European winter climate response to projected Arctic sea-ice loss strongly shaped by change in the North Atlantic jet

Copernicus Publications (2023)

Authors:

Kunhui Ye, Tim Woollings, James Screen

Impacts of Atlantic Multi-decadal Variability on the mid-latitude atmosphere

Copernicus Publications (2023)

Authors:

Matthew Patterson, Tim Woollings

The CAIRT earth explorer 11 mission: a way towards global gravity wave momentum budgets

Copernicus Publications (2023)

Authors:

Peter Preusse, Inna Polichtchouk, Scott Osprey, Joern Ungermann, Sebastian Rhode, Martyn Chipperfield, Quentin Errera, Felix Friedl-Vallon, Bernd Funke, Sophie Godin-Beekmann, Alex Hoffmann, Alizee Malavart, Piera Raspollini, Björn-Martin Sinnhuber, Pekka Verronen, Kaley Walker

Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming

Communications Earth & Environment Springer Nature 4 (2023) 125

Authors:

Tim Woollings, Marie Drouard, Christopher H O’Reilly, David MH Sexton, Carol McSweeney

Abstract:

Climate models predict a weak poleward shift of the jets in response to continuing climate change. Here we revisit observed jet trends using 40 years of satellite-era reanalysis products and find evidence that general poleward shifts are emerging. The significance of these trends is often low and varies between datasets, but the similarity across different seasons and hemispheres is notable. While much recent work has focused on the jet response to amplified Arctic warming, the observed trends are more consistent with the known sensitivity of the circulation to tropical warming. The circulation trends are within the range of historical model simulations but are relatively large compared to the models when the accompanying trends in upper tropospheric temperature gradients are considered. The balance between tropical warming and jet shifts should therefore be closely monitored in the near future. We hypothesise that the sensitivity of the circulation to tropical heating may be one factor affecting this balance.