The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6

Journal of Advances in Modeling Earth Systems American Geophysical Union (AGU) 12:9 (2020)

Authors:

Jon Robson, Yevgeny Aksenov, Thomas J Bracegirdle, Oscar Dimdore‐Miles, Paul T Griffiths, Daniel P Grosvenor, Daniel LR Hodson, James Keeble, Claire MacIntosh, Alex Megann, Scott Osprey, Adam C Povey, David Schröder, Mingxi Yang, Alexander T Archibald, Ken S Carslaw, Lesley Gray, Colin Jones, Brian Kerridge, Diane Knappett, Till Kuhlbrodt, Maria Russo, Alistair Sellar, Richard Siddans, Bablu Sinha, Rowan Sutton, Jeremy Walton, Laura J Wilcox

The American Monsoon System in HadGEM3.0 and UKESM1 CMIP6

Weather and Climate Dynamics Copernicus GmbH (2020)

Authors:

Jorge L García-Franco, Lesley J Gray, Scott Osprey

Abstract:

<p><strong>Abstract.</strong> The simulated climate in the American Monsoon System (AMS) in the CMIP6 submissions of HadGEM3.0 GC3.1 and the UKESM1 is assessed and compared to observations and reanalysis. Pre-industrial control and historical experiments are analysed to evaluate the model representation of this monsoon under different configurations, resolutions and with and without Earth System processes. The simulations exhibit a good representation of the temperature and precipitation seasonal cycles, although the historical experiments overestimate summer temperature in the Amazon, Mexico and Central America by more than 1.5 K. The seasonal cycle of rainfall and general characteristics of the North American Monsoon are well represented by all the simulations. The models simulate the bimodal regime of precipitation in southern Mexico, Central America and the Caribbean known as the midsummer drought, although with a stronger intraseasonal variation than observed. Austral summer biases in the modelled Atlantic Intertropical Convergence Zone (ITCZ), Walker Circulation, cloud cover and regional temperature distributions are significant and influenced the simulated spatial distribution of rainfall in the South American Monsoon. These biases lead to an overestimation of precipitation in southeastern Brazil and an underestimation of precipitation in the Amazon. El Niño Southern Oscillation (ENSO) characteristics and teleconnections to the AMS are well represented by the simulations. The precipitation responses to the positive and negative phase of ENSO in subtropical America are linear in both pre-industrial and historical experiments. Overall, the UKESM has the same performance as the lower resolution simulation of HadGEM3.0 GC3.1 and no significant difference for the AMS was found between the two model configurations. In contrast, the medium resolution HadGEM3.0 GC3.1 N216 simulation outperforms the low-resolution simulations in temperature, rainfall, ITCZ and Walker circulation biases.</p>

The American monsoon system in HadGEM3.0 and UKESM1

Weather and Climate Dynamics Copernicus Publications 1:2 (2020) 349-371

Authors:

Jorge L García-Franco, Lesley J Gray, Scott Osprey

Abstract:

The simulated climate of the American monsoon system (AMS) in the UK models HadGEM3 GC3.1 (GC3) and the Earth system model UKESM1 is assessed and compared to observations and reanalysis. We evaluate the pre-industrial control, AMIP and historical experiments of UKESM1 and two configurations of GC3: a low (1.875∘×1.25∘) and a medium (0.83∘×0.56∘) resolution. The simulations show a good representation of the seasonal cycle of temperature in monsoon regions, although the historical experiments overestimate the observed summer temperature in the Amazon, Mexico and Central America by more than 1.5 K. The seasonal cycle of rainfall and general characteristics of the North American monsoon of all the simulations agree well with observations and reanalysis, showing a notable improvement from previous versions of the HadGEM model. The models reasonably simulate the bimodal regime of precipitation in southern Mexico, Central America and the Caribbean known as the midsummer drought, although with a stronger-than-observed difference between the two peaks of precipitation and the dry period. Austral summer biases in the modelled Atlantic Intertropical Convergence Zone (ITCZ), cloud cover and regional temperature patterns are significant and influence the simulated regional rainfall in the South American monsoon. These biases lead to an overestimation of precipitation in southeastern Brazil and an underestimation of precipitation in the Amazon. The precipitation biases over the Amazon and southeastern Brazil are greatly reduced in the AMIP simulations, highlighting that the Atlantic sea surface temperatures are key for representing precipitation in the South American monsoon. El Niño–Southern Oscillation (ENSO) teleconnections, of precipitation and temperature, to the AMS are reasonably simulated by all the experiments. The precipitation responses to the positive and negative phase of ENSO in subtropical America are linear in both pre-industrial and historical experiments. Overall, the biases in UKESM1 and the low-resolution configuration of GC3 are very similar for precipitation, ITCZ and Walker circulation; i.e. the inclusion of Earth system processes appears to make no significant difference for the representation of the AMS rainfall. In contrast, the medium-resolution HadGEM3 N216 simulation outperforms the low-resolution simulations due to improved SSTs and circulation.

The American monsoon system in HadGEM3 and UKESM1

Weather and Climate Dynamics Copernicus Publications 1:2 (2020) 349-371

Authors:

Jorge L García-Franco, Scott Osprey, Lesley J Gray

Abstract:

The simulated climate of the American monsoon system (AMS) in the UK models HadGEM3 GC3.1 (GC3) and the Earth system model UKESM1 is assessed and compared to observations and reanalysis. We evaluate the pre-industrial control, AMIP and historical experiments of UKESM1 and two configurations of GC3: a low (1.875∘×1.25∘) and a medium (0.83∘×0.56∘) resolution. The simulations show a good representation of the seasonal cycle of temperature in monsoon regions, although the historical experiments overestimate the observed summer temperature in the Amazon, Mexico and Central America by more than 1.5 K. The seasonal cycle of rainfall and general characteristics of the North American monsoon of all the simulations agree well with observations and reanalysis, showing a notable improvement from previous versions of the HadGEM model. The models reasonably simulate the bimodal regime of precipitation in southern Mexico, Central America and the Caribbean known as the midsummer drought, although with a stronger-than-observed difference between the two peaks of precipitation and the dry period. Austral summer biases in the modelled Atlantic Intertropical Convergence Zone (ITCZ), cloud cover and regional temperature patterns are significant and influence the simulated regional rainfall in the South American monsoon. These biases lead to an overestimation of precipitation in southeastern Brazil and an underestimation of precipitation in the Amazon. The precipitation biases over the Amazon and southeastern Brazil are greatly reduced in the AMIP simulations, highlighting that the Atlantic sea surface temperatures are key for representing precipitation in the South American monsoon. El Niño–Southern Oscillation (ENSO) teleconnections, of precipitation and temperature, to the AMS are reasonably simulated by all the experiments. The precipitation responses to the positive and negative phase of ENSO in subtropical America are linear in both pre-industrial and historical experiments. Overall, the biases in UKESM1 and the low-resolution configuration of GC3 are very similar for precipitation, ITCZ and Walker circulation; i.e. the inclusion of Earth system processes appears to make no significant difference for the representation of the AMS rainfall. In contrast, the medium-resolution HadGEM3 N216 simulation outperforms the low-resolution simulations due to improved SSTs and circulation.

Simplified 3D GCM modelling of the irradiated brown dwarf WD 0137−349B

Monthly Notices of the Royal Astronomical Society Oxford University Press 496:4 (2020) 4674-4687

Authors:

Graham KH Lee, Sarah L Casewell, Katy L Chubb, Mark Hammond, Xianyu Tan, Shang-Min Tsai, Raymond Pierrehumbert

Abstract:

White dwarf–brown dwarf short-period binaries (Porb ≲ 2 h) are some of the most extreme irradiated atmospheric environments known. These systems offer an opportunity to explore theoretical and modelling efforts of irradiated atmospheres different to typical hot Jupiter systems. We aim to investigate the three-dimensional (3D) atmospheric structural and dynamical properties of the brown dwarf WD 0137−349B. We use the 3D global circulation model (GCM) Exo-Flexible Modelling System (FMS) with a dual-band grey radiative transfer scheme to model the atmosphere of WD 0137−349B. The results of the GCM model are post-processed using the 3D Monte Carlo radiative transfer model CMCRT. Our results suggest inefficient day–night energy transport and a large day–night temperature contrast for WD 0137−349B. Multiple flow patterns are present, shifting energy asymmetrically eastward or westward depending on their zonal direction and latitude. Regions of overturning are produced on the western terminator. We are able to reproduce the start of the system near-infrared (IR) emission excess at ≳1.95 μm as observed by the Gemini Near-Infrared Spectrograph (GNIRS) instrument. Our model overpredicts the IR phase curve fluxes by factors of ≈1–3, but generally fits the shape of the phase curves well. Chemical kinetic modelling using VULCAN suggests a highly ionized region at high altitudes can form on the dayside of the brown dwarf. We present a first attempt at simulating the atmosphere of a short-period white dwarf–brown dwarf binary in a 3D setting. Further studies into the radiative and photochemical heating from the ultraviolet irradiation are required to more accurately capture the energy balance inside the brown dwarf atmosphere. Cloud formation may also play an important role in shaping the emission spectra of the brown dwarf.